Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Endosomal sorting and signalling: an emerging role for sorting nexins

Abstract

The endocytic network comprises a series of interconnected tubulo-vesicular membranous compartments that together regulate various sorting and signalling events. Although it is clear that defects in endocytic function underlie a variety of human diseases, our understanding of the molecular entities that regulate these sorting and signalling events remains limited. Here we discuss the sorting nexins family of proteins and propose that they have a fundamental role in orchestrating the formation of protein complexes that are involved in endosomal sorting and signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain architecture of the mammalian sorting nexins.
Figure 2: The mammalian sorting nexins.
Figure 3: Tubular-based sorting within early endosomes.
Figure 4: SNX-BARs as scaffolds for the formation of sorting complexes.

Similar content being viewed by others

References

  1. Teasdale, R. D., Loci, D., Houghton, F., Karlsson, L. & Gleeson, P. A. A large family of endosome-localized proteins related to sorting nexin 1. Biochem. J. 358, 7–16 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlton, J. G., Bujny, M. V., Rutherford, A. & Cullen, P. J. Sorting nexins – unifying trends and new perspectives. Traffic 6, 75–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Seet, L. F. & Hong, W. The Phox (PX) domain proteins and membrane traffic. Biochim. Biophys. Acta 1761, 878–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genet. 39, 168–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Alto, N. M. et al. The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J. Cell Biol. 178, 1265–1278 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonifacino, J. S. & Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nature Rev. Mol. Cell Biol. 7, 568–579 (2006).

    Article  CAS  Google Scholar 

  7. Soldati, T. & Schliwa, M. Powering membrane traffic in endocytosis and recycling. Nature Rev. Mol. Cell Biol. 7, 897–908 (2006).

    Article  CAS  Google Scholar 

  8. Carlton, J. G. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through co-incidence sensing of high curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. McMahon, H. T & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Carlton, J. G. & Cullen, P. J. Co-incidence detection in phosphoinositide signalling. Trends Cell Biol. 15, 540–547 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis. Dev. Cell 13, 43–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Traer, C. J. et al. Sorting nexin-4 co-ordinates endosomal sorting of transferrin receptor with dynein-mediated transport into the endocytic recycling compartment. Nature Cell Biol. 9, 1370–1380 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Yarar, D., Surka, M. C., Leonard, M. C. & Schmid, S. L. SNX9 activities are regulated by multiple phosphoinositides through both PX and BAR domains. Traffic 9, 133–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Shimada, A. et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129, 761–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell 132, 807–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pylypenko, O., Lundmark, R., Rasmuson, E., Carlsson, S. R. & Rak, A. The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J. 26, 4788–4800 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mari, M. et al. Sortilin and mannose 6-phosphate receptors define an exit from early endosomal vacuoles for SNX1-dependent recycling to the TGN. Traffic 9, 380–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Bonifacino, J. S. & Hurley, J. H. Retromer. Curr. Opin. Cell Biol. 9 May 2008 (doi: 10.1016/j.ceb.2008.03.009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hierro, A. et al. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vergés, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biol. 6, 763–769 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. Coudreuse, D. Y., Roel, G., Betist, M. C., Destree, O. & Korswagen, H. C. Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Prasad, B. C. & Clark, S. G. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133, 1757–1766 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Belenkaya, T. Y. et al. The retromer complex influences Wnt secretion by recycling Wntless from endosomes to the trans-Golgi network. Dev. Cell 14, 120–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Pan, C.-L. et al. C. elegans AP-2 and retromer control Wnt signaling by regulating MIG-14/Wntless. Dev. Cell 14, 132–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, P.-T. et al. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev. Cell 14, 140–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Franch-Marro, X. et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nature Cell Biol. 10, 170–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Port, F. et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nature Cell Biol. 10, 178–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Jaillais, Y. Fobis-Loisy, I., Miège, C., Rollin, C. & Gaude, T. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443, 106–109 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Jaillais, Y. The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130, 1057–1070 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Hausmann, G., Banziger, C. & Basler, K. Helping Wingless take flight: how WNT proteins are secreted. Nature Rev. Mol. Cell Biol. 8, 331–336 (2007).

    Article  CAS  Google Scholar 

  32. Korolchuk, V. I. et al. Drosophila Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. J. Cell Sci. 120, 4367–4376 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Bujny, M. V., Poppoff, V., Johannes, L. & Cullen, P. J. The retromer component, sorting nexin-1, is required for efficient retrograde transport of Shiga toxin from early endosome to the trans-Golgi network. J. Cell Sci. 120, 2010–2021 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Popoff, V. et al. The retromer complex and clathrin define an early endosomal retrograde exit site. J. Cell Sci. 120, 2022–2031 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Utskarpen, A., Slagsvold, H. H., Dyve, A. B., Skånland, S. S. & Sandvig, K. SNX1 and SNX2 mediate retrograde transport of Shiga toxin. Biochem. Biophys. Res. Commun. 358, 566–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Skånland, S. S., Wälchli, S., Utskarpen, A., Wandinger-Ness, A. & Sandvig, K. Phosphoinositide-regulated retrograde transport of ricin: crosstalk between hVps34 and sorting nexins. Traffic 8, 297–309 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. Nielsen, M. S. et al. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol. Cell. Biol. 27, 6842–6851 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Small, S. A. et al. Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann. Neurol. 58, 909–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. He, X., Li, F., Chang, W. P. & Tang, J. GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J. Biol. Chem. 280, 11696–11703 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Griffin, C. T., Trejo, J. & Magnuson, T. Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2. Proc. Natl Acad. Sci. USA 102, 15173–15177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carlton, J. G. et al. Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J. Cell Sci. 118, 4527–4539 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Rojas, R., Kametaka, S., Haft, C. R. & Bonifacino, J. S. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol. Cell. Biol. 27, 1112–1124 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wassmer, T. et al. A loss-of-function screen reveals sorting nexin-5 and sorting nexin-6 as potential components of the mammalian retromer. J. Cell Sci. 120, 45–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, H. et al. Inhibitory regulation of EGF receptor degradation by sorting nexin 5. Biochem. Biophys. Res. Commun. 342, 537–546 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Seaman, M. N. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120, 2378–2389 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Gokool, S., Tattersall, D. & Seaman, M. N. EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 8, 1873–1886 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Ganley, I. G., Espinosa, E. & Pfeffer, S. R. A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. J. Cell Biol. 283, 159–172 (2008).

    Article  CAS  Google Scholar 

  48. Strochlic, T. I., Setty, T. G., Sitaram, A. & Burd, C. G. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J. Cell Biol. 177, 115–125 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pelham, H. R. Insights from yeast endosomes. Curr. Opin. Cell Biol. 14, 454–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Lundmark, R. & Carlsson, S. R. Regulated membrane recruitment of dynamin-2 mediated by sorting nexin 9. J. Biol. Chem. 279, 42694–42702 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Soulet, F., Yarar, D., Leonard, M. & Schmid, S. L. SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol. Biol. Cell 16, 2058–2067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Badour, K. et al. Interaction of the Wiskott-Aldrich syndrome protein with sorting nexin 9 is required for CD28 endocytosis and cosignaling in T cells. Proc. Natl Acad. Sci. USA 104, 1593–1598 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Håberg, K., Lundmark, R. & Carlsson, S. R. SNX18 is an SNX9 paralog that acts as a membrane tubulator in AP-1-positive endosomal trafficking. J. Cell Sci. 121, 1495–1505 (2008).

    Article  PubMed  CAS  Google Scholar 

  54. Hettema, E. H., Lewis, M. J., Black, M. W. & Pelham, H. R. Retromer and the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast endosomes. EMBO J. 22, 548–557 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  56. Hoepfner, S. et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121, 437–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Zheng, B. et al. Essential role of RGS-PX1/sorting nexin 13 in mouse development and regulation of endocytosis dynamics. Proc. Natl Acad. Sci. USA 103, 16776–16781 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng, B. et al. RGS-PX1, a GAP for Gαs and sorting nexin in vesicular trafficking. Science 294, 1939–1942 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Zheng, B. et al. Regulation of epidermal growth factor receptor degradation by heterotrimeric Gαs protein. Mol. Biol. Cell 15, 5538–5550 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lunn, M. L. et al. A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nature Neurosci. 10, 1249–1259 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Rincón, E. et al. Proteomics identification of sorting nexin 27 as a diacylglycerol kinase ζ-associated protein: new diacylglycerol kinase roles in endocytic recycling. Mol. Cell. Proteomics 6, 1073–1087 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. MacNeil, A. J., Mansour, M. & Pohajdak, B. Sorting nexin 27 interacts with the cytohesin associated scaffolding protein (CASP) in lymphocytes. Biochem. Biophys. Res. Commun. 359, 848–853 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Williams, R. L. & Urbé, S. The emerging shape of the ESCRT machinery. Nature Rev. Mol. Cell Biol. 8, 355–368 (2007).

    Article  CAS  Google Scholar 

  64. Kärkkäinen, S. et al. Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep. 7, 186–191 (2006).

    Article  PubMed  CAS  Google Scholar 

  65. Qin, B., He, M., Chen, X. & Pei, D. Sorting nexin 10 induces giant vacuoles in mammalian cells. J. Biol. Chem. 281, 36891–26896 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Schaff, U. Y. et al. SLIC-1/sorting nexin 20: A novel sorting nexin that directs subcellular distribution of PSGL-1. Eur. J. Immunol. 38, 550–564 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, J. et al. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J. Biol. Chem. 283, 11501–11508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Kerkhof, P. et al. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J. 24, 2851–2861 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shin, N. et al. SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2. J. Cell Sci. 121, 1252–1263 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Rutherford, A. C. et al. The mammalian phosphatidylinositol 3 monophosphate 5-kinase PIKfyve regulates endosome-to-TGN retrograde transport. J. Cell Sci. 119, 3944–3957 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, Y. et al. Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3, 5-bisphosphate, results in neurodegeneration in mice. Proc. Natl Acad. Sci. USA 104, 17518–17523 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dove, S. K. et al. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J. 23, 1922–1933 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jeffries, T. R., Dove, S. K., Michell, R. H. & Parker, P. J. PtdIns-specific MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol. Biol. Cell 15, 2652–2663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kerr, M. C. et al. A novel mammalian retromer component, Vps26B. Traffic 6, 991–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Shi, H., Rojas, R., Bonifacino, J. S. & Hurley, J. H. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nature Struct. Mol. Biol. 13, 540–548 (2006).

    Article  CAS  Google Scholar 

  76. Collins, B. M. et al. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, D. et al. Crystal structure of human Vps29 reveals a phosphodiesterase/nuclease-like fold and two protein–protein interaction sites. J. Biol. Chem. 280, 22962–22967 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Collins, B. M., Skinner, C. F., Watson, P. J., Seaman, M. N. & Owen, D. J. Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nature Struct. Mol. Biol. 12, 594–602 (2005).

    Article  CAS  Google Scholar 

  79. Gokool, S., Tattersall, D., Reddy, J. V. & Seaman, M. N. Identification of a conserved motif required for Vps35p/Vps26p interaction and assembly of the retromer complex. Biochem. J. 408, 287–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Restrepo, R. et al. Structural features of vps35p involved in interaction with other subunits of the retromer complex. Traffic 8, 1841–1853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao, X. et al. Dominant-negative behaviour of mammalian Vps35 in yeast requires a conserved PRLYL motif involved in retromer assembly. Traffic 8, 1829–1840 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Haft, C. R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nature Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I apologize to those colleagues for whom a lack of space has precluded discussion of their work. I am grateful to J. Carlton and my laboratory colleagues N. Attar, C. Danson, J. Oakley, C. Traer and T. Wassmer for their critical reading of the manuscript and their suggestions. I am indebted to C. Traer for help in preparing Figure 1. Work in our laboratory is supported by The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Interpro

BAR

EH

PDZ

PX

RA

RGS

SH3

OMIM

Alzheimer's disease

FURTHER INFORMATION

Peter J. Cullen's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullen, P. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 9, 574–582 (2008). https://doi.org/10.1038/nrm2427

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing