Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multivalent engagement of chromatin modifications by linked binding modules

Key Points

  • Histone post-translational modifications (PTMs) have numerous crucial roles in genome management, in part by recruiting or stabilizing chemical or structural modification activities. These recruited effector complexes are often composed of several domains that have been linked to modified histone recognition, and perform functions ranging from promoting transcription to establishing gene silencing.

  • We propose that multivalent interactions that are PTM dependent may act in concert to physically regulate chromatin structure and DNA-templated transactions. In principle, these cooperative binding interactions may yield enhanced net affinity, increased composite specificity and greater dynamics relative to similarly tight monovalent interactions.

  • We give a general description of chromatin marks that are known to coexist spatially and describe the experimental technologies used to establish these findings. Patterns of these modifications together may form substrates for multivalent recognition at the single-nucleosome level and beyond, which appear to dictate functional consequences.

  • The biophysics of multivalency has been well developed in other fields but is largely underappreciated and understudied in chromatin biology. We draw from the lessons learned in these other fields in describing how the thermodynamic principles of multivalency may explain several concerns about the histone code hypothesis. In particular, the weak affinities and often modest specificities intrinsic to a given histone-binding domain may be altered substantially when linked to a multivalent effector polypeptide or complex.

  • Although a well-characterized example that systematically describes multivalent effects on chromatin substrates is still lacking, we describe examples from the literature that are beginning to suggest the multivalent recognition theme. We hope to exhort further efforts to study this phenomenon and, to this end, propose a classification scheme to help clarify different putative modes of chromatin engagement.

Abstract

Various chemical modifications on histones and regions of associated DNA play crucial roles in genome management by binding specific factors that, in turn, serve to alter the structural properties of chromatin. These so-called effector proteins have typically been studied with the biochemist's paring knife — the capacity to recognize specific chromatin modifications has been mapped to an increasing number of domains that frequently appear in the nuclear subset of the proteome, often present in large, multisubunit complexes that bristle with modification-dependent binding potential. We propose that multivalent interactions on a single histone tail and beyond may have a significant, if not dominant, role in chromatin transactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermodynamics of multivalent binding.
Figure 2: Polypeptides with many putative effector modules and representative complexes.
Figure 3: Modes of multivalent chromatin engagement.
Figure 4: Models of nucleosomal engagement.

Similar content being viewed by others

References

  1. Cosgrove, M. S. Histone proteomics and the epigenetic regulation of nucleosome mobility. Expert Rev. Proteomics 4, 465–478 (2007). A recent overview of known histone PTMs as identified by mass spectrometry. It focuses on direct nucleosome-intrinsic effects of histone modifications and represents a nice catalogue of marks.

    CAS  PubMed  Google Scholar 

  2. Clarkson, M. J., Wells, J. R., Gibson, F., Saint, R. & Tremethick, D. J. Regions of variant histone His2AvD required for Drosophila development. Nature 399, 694–697 (1999).

    CAS  PubMed  Google Scholar 

  3. Bernstein, E. & Hake, S. B. The nucleosome: a little variation goes a long way. Biochem. Cell Biol. 84, 505–517 (2006).

    CAS  PubMed  Google Scholar 

  4. Henikoff, S. & Ahmad, K. Assembly of variant histones into chromatin. Annu. Rev. Cell Dev. Biol. 21, 133–153 (2005). A definitive review on histone variants that describes the functional associations of variants with various stages of chromatin metabolism.

    CAS  PubMed  Google Scholar 

  5. Pidoux, A. L. & Allshire, R. C. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 569–579 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Allis, C. D., Jenuwein, T. & Reinberg, D. Epigenetics (Cold Spring Harbor Laboratory Press, 2006).

    Google Scholar 

  7. Sproul, D., Gilbert, N. & Bickmore, W. A. The role of chromatin structure in regulating the expression of clustered genes. Nature Rev. Genet. 6, 775–781 (2005).

    CAS  PubMed  Google Scholar 

  8. Patterton, D. & Wolffe, A. P. Developmental roles for chromatin and chromosomal structure. Dev. Biol. 173, 2–13 (1996).

    CAS  PubMed  Google Scholar 

  9. Barratt, M. J., Hazzalin, C. A., Cano, E. & Mahadevan, L. C. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl Acad. Sci. USA 91, 4781–4785 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905–915 (2000).

    CAS  PubMed  Google Scholar 

  11. Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738 (2003).

    CAS  PubMed  Google Scholar 

  12. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007). A thoughtful examination of the meaning of the term epigenetics.

    CAS  PubMed  Google Scholar 

  13. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    CAS  PubMed  Google Scholar 

  14. Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol. 17, R233–R236 (2007).

    CAS  PubMed  Google Scholar 

  15. Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    CAS  PubMed  Google Scholar 

  16. Berger, S. L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    CAS  PubMed  Google Scholar 

  17. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  18. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  19. Huang, J. et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 444, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Seet, B. T., Dikic, I., Zhou, M. M. & Pawson, T. Reading protein modifications with interaction domains. Nature Rev. Mol. Cell Biol. 7, 473–483 (2006).

    CAS  Google Scholar 

  21. Yang, X. J. Multisite protein modification and intramolecular signaling. Oncogene 24, 1653–1662 (2005).

    CAS  PubMed  Google Scholar 

  22. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  23. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    CAS  PubMed  Google Scholar 

  24. Brinkman, A. B. et al. Histone modification patterns associated with the human X chromosome. EMBO Rep. 7, 628–634 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007). This study reports widespread abortive transcriptional initiation and the appearance of H3K4me3 at nearly every coding gene in ES cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007). A genome-wide profiling of chromatin states in stem cells as they differentiate, describing the first use of allele-specific ChIP. This work also represents the first direct comparison of ChIP-chip and ChIP-seq approaches.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia, B. A., Shabanowitz, J. & Hunt, D. F. Characterization of histones and their post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 11, 66–73 (2007).

    CAS  PubMed  Google Scholar 

  28. Cosgrove, M. S., Boeke, J. D. & Wolberger, C. Regulated nucleosome mobility and the histone code. Nature Struct. Mol. Biol. 11, 1037–1043 (2004).

    CAS  Google Scholar 

  29. Garcia-Ramirez, M., Rocchini, C. & Ausio, J. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270, 17923–17928 (1995).

    CAS  PubMed  Google Scholar 

  30. Tse, C., Sera, T., Wolffe, A. P. & Hansen, J. C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18, 4629–4638 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    CAS  PubMed  Google Scholar 

  32. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  33. Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a polycomb group protein complex. Science 306, 1574–1577 (2004).

    CAS  PubMed  Google Scholar 

  34. Zhao, T., Heyduk, T., Allis, C. D. & Eissenberg, J. C. Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. J. Biol. Chem. 275, 28332–28338 (2000).

    CAS  PubMed  Google Scholar 

  35. Nielsen, A. L. et al. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell 7, 729–739 (2001).

    CAS  PubMed  Google Scholar 

  36. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    CAS  PubMed  Google Scholar 

  37. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    CAS  PubMed  Google Scholar 

  38. Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007). A review that evaluates the biology and biophysics of H3K4 methylation and recognition, with an emphasis on structure and function.

    CAS  PubMed  Google Scholar 

  39. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol. 14, 1025–1040 (2007). A recent and comprehensive enumeration of chromatin-binding module structures in complex with modified histones, coupled to the attendant biology of these interactions.

    CAS  Google Scholar 

  40. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    CAS  PubMed  Google Scholar 

  41. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    CAS  PubMed  Google Scholar 

  42. van Attikum, H. & Gasser, S. M. The histone code at DNA breaks: a guide to repair? Nature Rev. Mol. Cell Biol. 6, 757–765 (2005).

    CAS  Google Scholar 

  43. Ahn, S. H. et al. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 120, 25–36 (2005).

    CAS  PubMed  Google Scholar 

  44. Cheung, W. L. et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507–517 (2003).

    CAS  PubMed  Google Scholar 

  45. Baylin, S. B. & Ohm, J. E. Epigenetic gene silencing in cancer — a mechanism for early oncogenic pathway addiction? Nature Rev. Cancer 6, 107–116 (2006).

    CAS  Google Scholar 

  46. Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med. 13, 363–372 (2007).

    CAS  PubMed  Google Scholar 

  47. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33 Suppl, 245–254 (2003).

    CAS  PubMed  Google Scholar 

  48. Lan, F. et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689–694 (2007).

    CAS  PubMed  Google Scholar 

  49. Swigut, T. & Wysocka, J. H3K27 demethylases, at long last. Cell 131, 29–32 (2007).

    CAS  PubMed  Google Scholar 

  50. Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).

    CAS  PubMed  Google Scholar 

  51. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006). Reports the first structure of a mixed two-effector module (one of each binding-domain type), as well as the first structures of the PHD fingers in complex with H3K4me3-binding modules.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pena, P. V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    CAS  PubMed  Google Scholar 

  55. Becker, P. B. Gene regulation: a finger on the mark. Nature 442, 31–32 (2006).

    CAS  PubMed  Google Scholar 

  56. Henikoff, S. Histone modifications: combinatorial complexity or cumulative simplicity? Proc. Natl Acad. Sci. USA 102, 5308–5309 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569 (1997).

    CAS  PubMed  Google Scholar 

  58. Hassan, A. H. et al. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators. Biochem. J. 402, 125–133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Krishnamurthy, V. M., Estroff, L. M. & Whitesides, G. M. in Fragment-based Approaches in Drug Discovery (eds Jahnke, W. & Erlanson, D. A.) 11–53 (Wiley-VCH, Weinheim, 2006). A comprehensive review of the thermodynamics of multivalency.

    Google Scholar 

  60. Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. Engl. 37, 2754–2794 (1998). This review is an exhaustive enumeration of examples of multivalency from the literature of chemistry and biology.

    PubMed  Google Scholar 

  61. Jencks, W. P. On the attribution and additivity of binding energies. Proc. Natl Acad. Sci. USA 78, 4046–4050 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, Y. C. et al. Binding of synthetic oligosaccharides to the hepatic Gal/GalNAc lectin. Dependence on fine structural features. J. Biol. Chem. 258, 199–202 (1983).

    CAS  PubMed  Google Scholar 

  63. Turner, B. M. Defining an epigenetic code. Nature Cell Biol. 9, 2–6 (2007).

    CAS  PubMed  Google Scholar 

  64. Fraser, P. & Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413–417 (2007). A wonderful review of chromatin territories by two of the key experts on in vivo chromatin structural organization.

    CAS  PubMed  Google Scholar 

  65. Hecht, A. & Grunstein, M. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol. 304, 399–414 (1999).

    CAS  PubMed  Google Scholar 

  66. Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA 99, 8695–8700 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Robyr, D. et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109, 437–446 (2002).

    CAS  PubMed  Google Scholar 

  68. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007). The first systematic application of ChIP-seq methodology to histone PTMs reports numerous histone modifications and their correlations to chromatin states. A comparison of different methylation states at the same Lys residue is also described.

    CAS  PubMed  Google Scholar 

  69. Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    CAS  PubMed  Google Scholar 

  70. Wade, P. A., Pruss, D. & Wolffe, A. P. Histone acetylation: chromatin in action. Trends Biochem. Sci. 22, 128–132 (1997).

    CAS  PubMed  Google Scholar 

  71. Kurdistani, S. K., Tavazoie, S. & Grunstein, M. Mapping global histone acetylation patterns to gene expression. Cell 117, 721–733 (2004).

    CAS  PubMed  Google Scholar 

  72. Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    PubMed  PubMed Central  Google Scholar 

  73. Johnson, E. M., Sterner, R. & Allfrey, V. G. Altered nucleosomes of active nucleolar chromatin contain accessible histone H3 in its hyperacetylated forms. J. Biol. Chem. 262, 6943–6946 (1987).

    CAS  PubMed  Google Scholar 

  74. Ura, K., Kurumizaka, H., Dimitrov, S., Almouzni, G. & Wolffe, A. P. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J. 16, 2096–2107 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, X. & Hayes, J. J. Site-specific binding affinities within the H2B tail domain indicate specific effects of lysine acetylation. J. Biol. Chem. 282, 23867–32876 (2007).

    Google Scholar 

  76. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000). Reports the first dual histone-binding module structure, and represents a landmark study indicating cooperative binding by two bromodomains of multiply acetylated histone substrates.

    CAS  PubMed  Google Scholar 

  77. Kasten, M. et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23, 1348–1359 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ladurner, A. G., Inouye, C., Jain, R. & Tjian, R. Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol. Cell 11, 365–376 (2003).

    CAS  PubMed  Google Scholar 

  79. Mujtaba, S. et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell 13, 251–263 (2004).

    CAS  PubMed  Google Scholar 

  80. Mujtaba, S., Zeng, L. & Zhou, M. M. Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26, 5521–5527 (2007).

    CAS  PubMed  Google Scholar 

  81. Mellor, J. Dynamic nucleosomes and gene transcription. Trends Genet. 22, 320–329 (2006).

    CAS  PubMed  Google Scholar 

  82. Huang, Y., Fang, J., Bedford, M. T., Zhang, Y. & Xu, R. M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312, 748–751 (2006).

    CAS  PubMed  Google Scholar 

  83. Klose, R. J. et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312–316 (2006).

    CAS  PubMed  Google Scholar 

  84. Li, B. et al. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316, 1050–1054 (2007). An important example of multivalent binding capacity that is combinatorially assembled into chromatin-modification complexes.

    CAS  PubMed  Google Scholar 

  85. Berndsen, C. E. et al. Nucleosome recognition by the Piccolo NuA4 histone acetyltransferase complex. Biochemistry 46, 2091–2099 (2007).

    CAS  PubMed  Google Scholar 

  86. Kim, Y. C., Grable, J. C., Love, R., Greene, P. J. & Rosenberg, J. M. Refinement of EcoRI endonuclease crystal structure: a revised protein chain tracing. Science 249, 1307–1309 (1990).

    CAS  PubMed  Google Scholar 

  87. Rao, J., Lahiri, J., Isaacs, L., Weis, R. M. & Whitesides, G. M. A trivalent system from vancomycin.D-ala-D-Ala with higher affinity than avidin.biotin. Science 280, 708–711 (1998). A landmark study in multivalency that demonstrates the enormous gain in overall affinity by systematic comparison of monovalent and trivalent vancomycin molecules.

    CAS  PubMed  Google Scholar 

  88. Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272 (2004).

    CAS  PubMed  Google Scholar 

  89. Martinez-Campa, C. et al. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol. Cell 15, 69–81 (2004).

    CAS  PubMed  Google Scholar 

  90. Matangkasombut, O. & Buratowski, S. Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol. Cell 11, 353–363 (2003).

    CAS  PubMed  Google Scholar 

  91. Lindroth, A. M. et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J. 23, 4286–4296 (2004).

    CAS  PubMed  Google Scholar 

  92. Fischle, W. et al. Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    CAS  PubMed  Google Scholar 

  93. Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    CAS  PubMed  Google Scholar 

  94. Joshi, A. A. & Struhl, K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971–978 (2005).

    CAS  PubMed  Google Scholar 

  95. Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    CAS  PubMed  Google Scholar 

  96. Shi, X. et al. Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J. Biol. Chem. 282, 2450–2455 (2007).

    CAS  PubMed  Google Scholar 

  97. You, A., Tong, J. K., Grozinger, C. M. & Schreiber, S. L. CoREST is an integral component of the CoREST–human histone deacetylase complex. Proc. Natl Acad. Sci. USA 98, 1454–1458 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Verreault, A., Kaufman, P. D., Kobayashi, R. & Stillman, B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr. Biol. 8, 96–108 (1998).

    CAS  PubMed  Google Scholar 

  99. Yang, M. et al. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol. Cell 23, 377–387 (2006).

    CAS  PubMed  Google Scholar 

  100. Shi, Y. J. et al. Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell 19, 857–864 (2005).

    CAS  PubMed  Google Scholar 

  101. Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448, 718–722 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Barak, O. et al. Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J. 22, 6089–6100 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Vandemark, A. P. et al. Autoregulation of the RSC4 tandem bromodomain by GCN5 acetylation. Mol. Cell 27, 817–828 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    CAS  PubMed  Google Scholar 

  108. Dodd, I. B., Micheelsen, M. A., Sneppen, K. & Thon, G. Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129, 813–822 (2007).

    CAS  PubMed  Google Scholar 

  109. Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771–778 (2002).

    CAS  PubMed  Google Scholar 

  110. Filippova, G. N. et al. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol. Cell. Biol. 16, 2802–2813 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zubarev, R. A. et al. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 72, 563–573 (2000).

    CAS  PubMed  Google Scholar 

  112. Mikesh, L. M. et al. The utility of ETD mass spectrometry in proteomic analysis. Biochim. Biophys. Acta 1764, 1811–1822 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chicoine, L. G., Schulman, I. G., Richman, R., Cook, R. G. & Allis, C. D. Nonrandom utilization of acetylation sites in histones isolated from Tetrahymena. Evidence for functionally distinct H4 acetylation sites. J. Biol. Chem. 261, 1071–1076 (1986).

    CAS  PubMed  Google Scholar 

  114. Shechter, D., Dormann, H. L., Allis, C. D. & Hake, S. B. Extraction, purification and analysis of histones. Nature Protoc. 2, 1445–1457 (2007).

    CAS  Google Scholar 

  115. Metivier, R. et al. Transcriptional complexes engaged by apo-estrogen receptor-α isoforms have divergent outcomes. EMBO J. 23, 3653–3666 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    CAS  PubMed  Google Scholar 

  117. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    CAS  PubMed  Google Scholar 

  118. Shogren-Knaak, M. A. & Peterson, C. L. Creating designer histones by native chemical ligation. Methods Enzymol. 375, 62–76 (2004).

    CAS  PubMed  Google Scholar 

  119. Chatterjee, C., McGinty, R. K., Pellois, J. P. & Muir, T. W. Auxiliary-mediated site-specific peptide ubiquitylation. Angew. Chem. Int. Ed. Engl. 46, 2814–2818 (2007).

    CAS  PubMed  Google Scholar 

  120. Simon, M. D. et al. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128, 1003–1012 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T. J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    CAS  PubMed  Google Scholar 

  122. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    CAS  PubMed  Google Scholar 

  123. Xiao, H. et al. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol. Cell 8, 531–543 (2001).

    CAS  PubMed  Google Scholar 

  124. Turner, B. M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    CAS  PubMed  Google Scholar 

  125. Taverna, S. D. et al. Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc. Natl Acad. Sci. USA 104, 2086–2091 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Garcia, B. A. et al. Modifications of human histone H3 variants during mitosis. Biochemistry 44, 13202–13213 (2005).

    CAS  PubMed  Google Scholar 

  127. Daujat, S. et al. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr. Biol. 12, 2090–2097 (2002).

    CAS  PubMed  Google Scholar 

  128. Loyola, A., Bonaldi, T., Roche, D., Imhof, A. & Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24, 309–316 (2006).

    CAS  PubMed  Google Scholar 

  129. Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077–2080 (2001).

    CAS  PubMed  Google Scholar 

  130. Sims, J. K., Houston, S. I., Magazinnik, T. & Rice, J. C. A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin. J. Biol. Chem. 281, 12760–12766 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all authors whose important contributions could not be acknowledged due to space limitations. We thank members of the Patel and Allis laboratories for reading the manuscript and providing constructive criticism. We are especially grateful to H. Dormann, A. Goldberg, P. Lewis, S. Taverna, J. Wysocka and the anonymous reviewers. D.J.P. is supported by funds from the Abby Rockefeller Mauze Trust and the Dewitt Wallace and Maloris Foundations, and C.D.A. is supported by National Institutes of Health grants and funds from The Rockefeller University. A.J.R. is supported by an Irvington postdoctoral fellowship from the Cancer Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander J. Ruthenburg, Dinshaw J. Patel or C. David Allis.

Related links

Related links

FURTHER INFORMATION

C. David Allis's homepage

Dinshaw J. Patel's homepage

SMART database

POSTER

Readout of chromatin marks by histone-binding modules

Glossary

PTM

A post-translational modification or chemical alteration of an amino acid residue (or residues) that occurs subsequent to its translation, introducing a new functional group into a given protein.

Histone variant

An isoform of a particular histone type that is encoded as a distinct gene and denoted by an additional designation (for example, the bar body-deficient histone H2A gene product is called H2A.bbd). Some variants have specialized functions: notably, H2A.X is involved in DNA repair and H2A.Z is involved in gene regulation.

Heterochromatin

A highly condensed and transcriptionally less active form of chromatin that occurs at defined sites, such as centromeres, silencer DNA elements or telomeres.

Euchromatin

Chromatin that appears to be less compact than condensed mitotic chromosomes. Active genes are contained within euchromatin.

DNA methylation

A covalent modification of DNA at the 5-position of the cytosine nucleobase that is coupled to transcriptional repression. CpG sequence elements in gene regulatory regions are often modified in this manner to attenuate gene transcription.

Direct nucleosome-intrinsic

A histone modification-dependent process that alters the physical properties of the nucleosome by modulation of interactions of the core histone octamer with DNA.

Direct nucleosome-extrinsic

A histone modification-dependent process that alters the physical properties of chromatin by modulation of interactions between nucleosomes.

Effector mediated

A chromatin modification-dependent process that changes or stabilizes the chromatin architecture through modification-dependent recruitment of accessory factors.

Effector

A protein domain that binds a particular histone modification to transduce a downstream function. Effector proteins themselves or other subunits of complexes in which they reside can be histone-modifying enzymes or chromatin-remodelling factors, or they can be involved in stabilization of heterochromatin or have some other gene regulatory role.

Bromodomain

A domain with sequence conservation that is found in several transcriptional regulatory proteins involved in gene activation, and that has acetyl-Lys-binding activity.

PHD finger domain

The plant homeodomain (PHD) zinc finger is found in many nuclear proteins that are thought to be involved in chromatin transactions.

ChIP-chip

Chromatin immunoprecipitation followed by amplification and microarray hybridization.

ChIP-seq

Chromatin immunoprecipitation followed by massively multiplexed sequencing.

Lys acetylation

Acetylation of the ζ-amine of the Lys side chain, a PTM that is catalysed by histone acetyltransferases.

Lys methylation

A PTM at the ζ-amine of Lys that adds one, two or three methyl groups.

Arg methylation

A PTM of the η-nitrogens of Arg to introduce one or two methyl groups.

Cooperativity

Binding enhancement caused by one or more discrete binding interactions that further assist such interactions, although not necessarily as a consequence of a conformational change.

Chromodomain

The canonical methyl-Lys-binding protein fold that was initially characterized in HP1 and Polycomb proteins. A member of the Royal superfamily of folds.

Negative cooperativity

Antagonism in binding that leads to sub-additive or repulsive binding energies.

WD40 repeat

A protein motif that is composed of a 40-amino-acid repeat that forms a four-stranded antiparallel β-propeller sheet. WD40 proteins that contain 5–7 WD40 repeats may form β-propeller structures that participate in many cellular functions, including G-protein-mediated signal transduction, transcriptional regulation, RNA processing and regulation of vesicle metabolism.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruthenburg, A., Li, H., Patel, D. et al. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8, 983–994 (2007). https://doi.org/10.1038/nrm2298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing