Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AAA+ proteins: have engine, will work

Key Points

  • AAA+ proteins are ATPases associated with various cellular activities.

  • AAA+ proteins contain structurally conserved ATP-binding domains (AAA+ domains) that consist of N-terminal α/β and C-terminal α-helical subdomains. AAA+ domains are attached to various other domains and, in some cases, interact with adaptor proteins to generate the structural and functional diversity of the family. AAA+ domains function as oligomeric rings.

  • Mutations of conserved residues in AAA+ domains have predictable effects on nucleotide binding or hydrolysis, and have been successfully used to probe AAA+-protein function.

  • AAA+ proteins undergo conformational changes on nucleotide binding and hydrolysis; these changes can be large and seem to be responsible for the effects of these enzymes on their substrates.

  • AAA+ proteins are involved in many cellular processes, but seem to share the common behaviour of inducing conformational changes in target proteins. These conformational changes lead to substrate remodelling and, in some cases, perturb protein structure sufficiently to promote unfolding.

  • Key categories of AAA+-protein-mediated reactions include unfolding for proteolysis, the disassembly of protein aggregates, and the disassembly of otherwise stable protein complexes. All of these processes require the enzyme to hydrolyse ATP.

  • Mutations in AAA+ proteins are directly responsible for a number of inherited human diseases, including Zellweger's spectrum peroxisome-biogenesis disorders, early-onset torsion dystonia, hereditary spastic paraplegia, and inclusion-body myopathy with early-onset Paget's disease and frontotemporal dementia.

Abstract

The AAA+ (ATPases associated with various cellular activities) family is a large and functionally diverse group of enzymes that are able to induce conformational changes in a wide range of substrate proteins. The family's defining feature is a structurally conserved ATPase domain that assembles into oligomeric rings and undergoes conformational changes during cycles of nucleotide binding and hydrolysis. Here, we review the structural organization of AAA+ proteins, the conformational changes they undergo, the range of different reactions they catalyse, and the diseases associated with their dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The organization of an AAA+ domain.
Figure 2: Structure of an AAA+ domain.
Figure 3: The structure of an AAA+ oligomer.
Figure 4: AAA+-protein function.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  2. Iyer, L. M., Leipe, D. D., Koonin, E. V. & Aravind, L. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 146, 11–31 (2004). A recent, definitive sequence and structure-based analysis of the AAA+-protein family.

    Article  CAS  PubMed  Google Scholar 

  3. Ogura, T. & Wilkinson, A. J. AAA+ superfamily ATPases: common structure — diverse function. Genes Cells 6, 575–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lupas, A. N. & Martin, J. AAA proteins. Curr. Opin. Struct. Biol. 12, 746–753 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Sauer, R. T. et al. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119, 9–18 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frickey, T. & Lupas, A. N. Phylogenetic analysis of AAA proteins. J. Struct. Biol. 146, 2–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Beyer, A. Sequence analysis of the AAA protein family. Protein Sci. 6, 2043–2058 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU–HsIV. Nature 403, 800–805 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Sousa, M. C. et al. Crystal and solution structures of an HslUV protease–chaperone complex. Cell 103, 633–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Smith, G. R., Contreras-Moreira, B., Zhang, X. & Bates, P. A. A link between sequence conservation and domain motion within the AAA+ family. J. Struct. Biol. 146, 189–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Weibezahn, J., Schlieker, C., Bukau, B. & Mogk, A. Characterization of a trap mutant of the AAA+ chaperone ClpB. J. Biol. Chem. 278, 32608–32617 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Dalal, S., Rosser, M. F., Cyr, D. M. & Hanson, P. I. Distinct roles for the AAA ATPases NSF and p97 in the secretory pathway. Mol. Biol. Cell 15, 637–648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomoyasu, T. et al. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J. Bacteriol. 175, 1344–1351 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ogura, T., Whiteheart, S. W. & Wilkinson, A. J. Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J. Struct. Biol. 146, 106–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Steel, G. J., Harley, C., Boyd, A. & Morgan, A. A screen for dominant negative mutants of SEC18 reveals a role for the AAA protein consensus sequence in ATP hydrolysis. Mol. Biol. Cell 11, 1345–1356 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scheffzek, K. et al. The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Joshi, S. A., Baker, T. A. & Sauer, R. T. C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding. Mol. Microbiol. 48, 67–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, J. et al. Crystal structures of the HslVU peptidase–ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001). First study to highlight the importance of the conserved GYVG motif in the central pore of AAA+ proteins.

    Article  CAS  PubMed  Google Scholar 

  20. Song, H. K. et al. Mutational studies on HslU and its docking mode with HslV. Proc. Natl Acad. Sci. USA 97, 14103–14108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K. & Ogura, T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem. 278, 50182–50187 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Siddiqui, S. M., Sauer, R. T. & Baker, T. A. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18, 369–374 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lum, R., Tkach, J. M., Vierling, E. & Glover, J. R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279, 29139–29146 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nature Struct. Mol. Biol. 11, 607–615 (2004).

    Article  CAS  Google Scholar 

  25. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107–1116 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J. Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. J. Struct. Biol. 148, 259–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Rouiller, I. et al. Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nature Struct. Biol. 9, 950–957 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. DeLaBarre, B. & Brunger, A. T. Nucleotide dependent motion and mechanism of action of p97/VCP. J. Mol. Biol. 347, 437–452 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Davies, J. M., Tsuruta, H., May, A. P. & Weis, W. I. Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-ray scattering. Structure 13, 183–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. DeLaBarre, B. & Brunger, A. T. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nature Struct. Biol. 10, 856–863 (2003). First complete crystal structure of a hexameric AAA+ protein that contains tandem AAA+ domains.

    Article  CAS  PubMed  Google Scholar 

  31. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Davey, M. J., Jeruzalmi, D., Kuriyan, J. & O'Donnell, M. Motors and switches: AAA+ machines within the replisome. Nature Rev. Mol. Cell Biol. 3, 826–835 (2002).

    Article  CAS  Google Scholar 

  33. Pickart, C. M. & Cohen, R. E. Proteasomes and their kin: proteases in the machine age. Nature Rev. Mol. Cell Biol. 5, 177–187 (2004).

    Article  CAS  Google Scholar 

  34. Wang, J., Hartling, J. A. & Flanagan, J. M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Ishikawa, T. et al. Translocation pathway of protein substrates in ClpAP protease. Proc. Natl Acad. Sci. USA 98, 4328–4333 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ortega, J., Lee, H. S., Maurizi, M. R. & Steven, A. C. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes. J. Struct. Biol. 146, 217–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, Y. I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nature Struct. Biol. 8, 230–233 (2001). Defines the conserved IGF motif that is required for the interaction of AAA+ proteins with ClpP.

    Article  CAS  PubMed  Google Scholar 

  38. Joshi, S. A., Hersch, G. L., Baker, T. A. & Sauer, R. T. Communication between ClpX and ClpP during substrate processing and degradation. Nature Struct. Mol. Biol. 11, 404–411 (2004).

    Article  CAS  Google Scholar 

  39. Keiler, K. C., Waller, P. R. & Sauer, R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Flynn, J. M., Neher, S. B., Kim, Y. I., Sauer, R. T. & Baker, T. A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 671–683 (2003). Proteomics study that greatly expanded the known repertoire of ClpXP substrates.

    Article  CAS  PubMed  Google Scholar 

  41. Neher, S. B., Flynn, J. M., Sauer, R. T. & Baker, T. A. Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev. 17, 1084–1089 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ishikawa, T., Maurizi, M. R. & Steven, A. C. The N-terminal substrate-binding domain of ClpA unfoldase is highly mobile and extends axially from the distal surface of ClpAP protease. J. Struct. Biol. 146, 180–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Xia, D., Esser, L., Singh, S. K., Guo, F. & Maurizi, M. R. Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone. J. Struct. Biol. 146, 166–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Smith, C. K., Baker, T. A. & Sauer, R. T. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc. Natl Acad. Sci. USA 96, 6678–6682 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leonhard, K., Stiegler, A., Neupert, W. & Langer, T. Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398, 348–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Wickner, S. et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl Acad. Sci. USA 91, 12218–12222 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weber-Ban, E. U., Reid, B. G., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, Y. I., Burton, R. E., Burton, B. M., Sauer, R. T. & Baker, T. A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Kenniston, J. A., Baker, T. A., Fernandez, J. M. & Sauer, R. T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114, 511–520 (2003). A study of ATP utilization during substrate denaturation by ClpXP indicates that denaturation proceeds by the repeated application of a constant denaturing force.

    Article  CAS  PubMed  Google Scholar 

  50. Reid, B. G., Fenton, W. A., Horwich, A. L. & Weber-Ban, E. U. ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc. Natl Acad. Sci. USA 98, 3768–3772 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burton, R. E., Siddiqui, S. M., Kim, Y. I., Baker, T. A. & Sauer, R. T. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J. 20, 3092–3100 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001). This paper shows, using well characterized model substrates, that ClpAP-mediated unfolding and degradation is controlled by the structure(s) adjacent to the degradation signal, rather than by global thermodynamic stability.

    Article  CAS  PubMed  Google Scholar 

  53. Kenniston, J. A., Burton, R. E., Siddiqui, S. M., Baker, T. A. & Sauer, R. T. Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation. J. Struct. Biol. 146, 130–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Prakash, S., Tian, L., Ratliff, K. S., Lehotzky, R. E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nature Struct. Mol. Biol. 11, 830–837 (2004). Identification of a role for unstructured regions of polypeptides in the initiation of degradation by the proteasome.

    Article  CAS  Google Scholar 

  55. Braun, B. C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biol. 1, 221–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, C. W. et al. Conformational remodeling of proteasomal substrates by PA700, the 19S regulatory complex of the 26S proteasome. J. Biol. Chem. 277, 26815–26820 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Ye, Y., Meyer, H. H. & Rapoport, T. A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004). References 58 and 59 identify a receptor for p97 in the ER membrane.

    Article  CAS  PubMed  Google Scholar 

  60. Lee, R. J. et al. Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J. 23, 2206–2215 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Langer, T., Kaser, M., Klanner, C. & Leonhard, K. AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis. Biochem. Soc. Trans. 29, 431–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Sanchez, Y. & Lindquist, S. L. HSP104 required for induced thermotolerance. Science 248, 1112–1115 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Parsell, D. A., Kowal, A. S., Singer, M. A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Glover, J. R. & Tkach, J. M. Crowbars and ratchets: hsp100 chaperones as tools in reversing protein aggregation. Biochem. Cell Biol. 79, 557–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880–884 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793–1797 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998). First in vitro demonstration of Hsp104 activity.

    Article  CAS  PubMed  Google Scholar 

  68. Goloubinoff, P., Mogk, A., Zvi, A. P., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl Acad. Sci. USA 96, 13732–13737 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004). This paper shows that ClpB, like ClpA and ClpX, threads substrates through its central pore.

    Article  CAS  PubMed  Google Scholar 

  70. Hattendorf, D. A. & Lindquist, S. L. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J. 21, 12–21 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, S. et al. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Mizuuchi, M., Baker, T. A. & Mizuuchi, K. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds. Cell 83, 375–385 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Surette, M. G., Buch, S. J. & Chaconas, G. Transpososomes: stable protein–DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell 49, 253–262 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Levchenko, I., Luo, L. & Baker, T. A. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev. 9, 2399–2408 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Levchenko, I., Yamauchi, M. & Baker, T. A. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev. 11, 1561–1572 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Burton, B. M., Williams, T. L. & Baker, T. A. ClpX-mediated remodeling of Mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Mol. Cell 8, 449–454 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Burton, B. M. & Baker, T. A. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Chem. Biol. 10, 463–472 (2003). References 76 and 77 establish the mechanistic basis for ClpX function in transposome remodelling.

    Article  CAS  PubMed  Google Scholar 

  78. Jahn, R., Lang, T. & Sudhof, T. C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Rothman, J. E. Lasker Basic Medical Research Award. The machinery and principles of vesicle transport in the cell. Nature Med. 8, 1059–1062 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Whiteheart, S. W., Schraw, T. & Matveeva, E. A. N-ethylmaleimide sensitive factor (NSF) structure and function. Int. Rev. Cytol. 207, 71–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Hohl, T. M. et al. Arrangement of subunits in 20S particles consisting of NSF, SNAPs, and SNARE complexes. Mol. Cell 2, 539–548 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Whiteheart, S. W. & Matveeva, E. A. Multiple binding proteins suggest diverse functions for the N-ethylmaleimide sensitive factor. J. Struct. Biol. 146, 32–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Pak, M. & Wickner, S. Mechanism of protein remodeling by ClpA chaperone. Proc. Natl Acad. Sci. USA 94, 4901–4906 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Konieczny, I. & Liberek, K. Cooperative action of Escherichia coli ClpB protein and DnaK chaperone in the activation of a replication initiation protein. J. Biol. Chem. 277, 18483–18488 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Hartman, J. J. et al. Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93, 277–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Evans, K. J., Gomes, E. R., Reisenweber, S. M., Gundersen, G. G. & Lauring, B. P. Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J. Cell Biol. 168, 599–606 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Babst, M. A protein's final ESCRT. Traffic 6, 2–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Reuber, B. E. et al. Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nature Genet. 17, 445–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature Genet. 36, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Goodchild, R. E. & Dauer, W. T. Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc. Natl Acad. Sci. USA 101, 847–852 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Naismith, T. V., Heuser, J. E., Breakefield, X. O. & Hanson, P. I. TorsinA in the nuclear envelope. Proc. Natl Acad. Sci. USA 101, 7612–7617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamamoto, S. et al. Expression level of valosin-containing protein is strongly associated with progression and prognosis of gastric carcinoma. J. Clin. Oncol. 21, 2537–2544 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A. & Levitt, P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Guan, Z. et al. A spontaneous recurrent seizure-related Rattus NSF gene identified by linker capture subtraction. Brain Res. Mol. Brain Res. 87, 117–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Grote, E., Carr, C. M. & Novick, P. J. Ordering the final events in yeast exocytosis. J. Cell Biol. 151, 439–452 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Littleton, J. T. et al. SNARE-complex disassembly by NSF follows synaptic-vesicle fusion. Proc. Natl Acad. Sci. USA 98, 12233–12238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Matsushita, K. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139–150 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Matveeva, E. A., Whiteheart, S. W., Vanaman, T. C. & Slevin, J. T. Phosphorylation of the N-ethylmaleimide-sensitive factor is associated with depolarization-dependent neurotransmitter release from synaptosomes. J. Biol. Chem. 276, 12174–12181 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Huynh, H. et al. Control of vesicle fusion by a tyrosine phosphatase. Nature Cell Biol. 6, 831–839 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Rabouille, C., Levine, T. P., Peters, J. M. & Warren, G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905–914 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nature Cell Biol. 3, 1086–1091 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Woodman, P. G. p97, a protein coping with multiple identities. J. Cell Sci. 116, 4283–4290 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Beuron, F. et al. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J. Struct. Biol. 123, 248–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Matveeva, E. A., He, P. & Whiteheart, S. W. N-ethylmaleimide-sensitive fusion protein contains high and low affinity ATP-binding sites that are functionally distinct. J. Biol. Chem. 272, 26413–26418 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Karata, K., Inagawa, T., Wilkinson, A. J., Tatsuta, T. & Ogura, T. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH. J. Biol. Chem. 274, 26225–26232 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phyllis I. Hanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Swiss-Prot

ClpA

ClpB

ClpP

ClpX

FtsH

Hsp104

Lon

FURTHER INFORMATION

Phyllis Hanson's laboratory

Glossary

WALKER-A AND -B MOTIFS

Conserved sequence elements that are characteristic of nucleotide-binding folds.

P-LOOP

A loop element of the Walker-A motif that is associated with the phoshates of bound nucleotides.

ROSSMAN FOLD

An α/β fold that is characteristic of nucleotide-binding domains.

HslU

The AAA+-protein component of the heat-shock-locus HslVU protease of bacteria and archaea.

NSF

(N-ethylmaleimide-sensitive factor or N-ethylmaleimide-sensitive fusion protein). It was originally discovered on the basis of its essential activity in transport between Golgi stacks.

p97/VCP

(97-kDa protein/valosin-containing protein). p97/VCP has been implicated in numerous cellular processes, but most clearly in handling ubiquitylated proteins en route to the proteasome.

THERMOTOLERANCE

A transient state of enhanced heat resistance that is induced by exposure to mild heat shock.

CHAMBERED PROTEASE

A barrel-shaped oligomeric proteolytic complex with restricted access to internal active sites.

ClpXP

Caseinolytic protease found in bacteria, which consists of a proteolytic ClpP barrel and a 'gatekeeping' AAA+ hexamer of ClpX.

ClpAP

ClpAP is similar to ClpXP and is also found in bacteria, but the 'gatekeeping' AAA+ hexamer is composed of ClpA.

FtsH

A membrane-anchored AAA protease in bacteria, which contains AAA and protease domains within a single polypeptide chain.

Lon

A soluble AAA protease in bacteria, which contains AAA and protease domains within a single polypeptide chain. It is important in cell stress responses.

26S PROTEASOME

The primary chambered protease in eukaryotes. Its name reflects its approximate sedimentation coefficient. It is composed of multicatalytic proteolytic (20S) and regulatory (19S) subcomplexes.

ClpP

The proteolytic component of bacterial chambered proteases, which consists of 14 proteolytic subunits.

GroEL TRAP

A mutant of the GroEL chaperonin that binds unfolded proteins but does not release them.

PRION

A proteinaceous infectious particle, which was discovered by Stanley Prusiner for its role in the transmission of infectious neurodegenerative disorders. Prions are conformationally modified proteins.

[PSI+]

An ordered aggregate of the yeast translation terminator Sup35, which is referred to as a yeast prion.

Hsp70 CHAPERONE SYSTEM

(70-kDa heat-shock-protein chaperone system). Conserved family of 70-kDa ATPases that are involved in protein folding. They cooperate with Hsp40 and nucleotide-exchange factors. Members include DnaK, DnaJ and GrpE in Escherichia coli and related proteins in higher organisms.

DNA TRANSPOSITION

The movement of mobile DNA elements or transposons by recombination.

Mu TRANSPOSOSOME

A complex containing the MuA transposase tetramer and the two ends of the Mu genomic DNA.

MuA TRANSPOSASE

A 75-kDa multidomain enzyme of a bacterial virus. It forms a homotetramer and promotes DNA recombination by catalysing donor DNA cleavage and strand transfer and joining at the target site.

SNAREs

(soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptors). Coiled-coil-forming proteins that are found on cellular membranes and that promote intracellular membrane fusion.

α-SNAP

(α-soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein). Recruits NSF to membranes and binds to SNARE proteins.

MULTIVESICULAR BODY

An endosome, usually a late endosome, that contains lumenal vesicles. The internal vesicles are thought to form by invagination and budding from the limiting membrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, P., Whiteheart, S. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6, 519–529 (2005). https://doi.org/10.1038/nrm1684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing