Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intermediate filaments mediate cytoskeletal crosstalk

Key Points

  • Expressed abundantly and differentially, intermediate filaments provide each cell type with a unique cytoskeletal architecture, thereby providing a mechanism for cell-type-specific cytoskeletal crosstalk. Intermediate filaments form extensive networks within the cytoplasm that extend radially in all directions from the nucleus to the cell surface, conferring an obvious advantage for intermediate filaments in coordinating cytoskeletal crosstalk in all areas of the cytoplasm.

  • Different intermediate-filament types have preferential interactions with either microtubules or microfilaments. Among the main mediators of crosstalk between intermediate filaments and the other cytoskeletal systems are the molecular motors kinesin, dynein and myosin Va. The assembly and maintenance of an intermediate-filament network depends on microtubule- and microfilament-based motility and this motility can be regulated by phosphorylation of intermediate filaments as well as by intermediate-filament-associated proteins, such as plectin and bullous pemphigoid antigens, and microtubule-associated proteins like tau.

  • Intermediate-filament-mediated cytoskeletal crosstalk might provide specialized cells with mechanisms that are related to their different physiological activities and might be related to the determination and maintenance of the diverse cell shapes. Different types of intermediate filament are expressed during the development and regeneration of nerve cells, at which time the shape of the cells undergoes rapid and numerous changes. Targeted disruption of intermediate filaments, which leads to significant alterations in both microtubule and microfilament networks, also causes marked changes in cell shape.

  • The severely compromised wound-healing capacity of vimentin-deficient (vim−/−) mice and the reduction in motility of their fibroblasts imply a role for intermediate filaments and intermediate-filament-based cytoskeletal crosstalk in cell motility. With findings that vimentin interacts with adhesion-complex components such as fimbrin and plectin, both of which are known to interact with other cytoskeletal elements like actin, there is increasing evidence for a role for intermediate filaments in mediating cytoskeletal crosstalk at these crucial cellular structures. Plectin-deficient cells also have impaired motility.

  • Phosphorylation is intimately linked to the assembly/disassembly of intermediate-filament networks, indicating a role for intermediate filaments as highly sensitive mediators of cytoskeletal crosstalk through signalling. Intermediate filaments are important factors in signalling pathways that regulate both microtubule and microfilament function and organization during various cellular processes such as cell movement and cell division. This appears to be related to the regulation of certain activities involving key components in signal transduction such as Rho kinase α and the 14-3-3 proteins.

Abstract

Intermediate filaments, actin-containing microfilaments and microtubules are the three main cytoskeletal systems of vertebrate and many invertebrate cells. Although these systems are composed of distinctly different proteins, they are in constant and intimate communication with one another. Understanding the molecular basis of this cytoskeletal crosstalk is essential for determining the mechanisms that underlie many cell-biological phenomena. Recent studies have revealed that intermediate filaments and their associated proteins are important components in mediating this crosstalk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vimentin filaments in a rat-kangaroo PtK2 cell.
Figure 2: Intermediate-filament assembly in vitro.
Figure 3: Model for intermediate-filament assembly and motility.
Figure 4: Modulators of intermediate-filament motility.
Figure 5: Intermediate filaments and cell shape.
Figure 6: Vimentin in Rho GTPase signalling and cytoskeletal crosstalk.

Similar content being viewed by others

References

  1. Parry, D. A. & Steinert, P. M. Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Q. Rev. Biophys. 32, 99–187 (1999).

    CAS  PubMed  Google Scholar 

  2. Helfand, B. T., Chang, L. & Goldman, R. D. The dynamic and motile properties of intermediate filaments. Annu. Rev. Cell Dev. Biol. 19, 445–467 (2003).

    CAS  PubMed  Google Scholar 

  3. Zimek, A., Stick, R. & Weber, K. Genes coding for intermediate filament proteins: common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes. J. Cell Sci. 116, 2295–2302 (2003).

    CAS  PubMed  Google Scholar 

  4. Herrmann, H., Hesse, M., Reichenzeller, M., Aebi, U. & Magin, T. M. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. Int. Rev. Cytol. 223, 83–175 (2003). An excellent, recent review on many aspects of the intermediate-filament field of research.

    CAS  PubMed  Google Scholar 

  5. Strelkov, S. V., Herrmann, H. & Aebi U. Molecular architecture of intermediate filaments. Bioessays 25, 243–251 (2003).

    CAS  PubMed  Google Scholar 

  6. Kumar, S., Yin, X., Trapp, B. D., Hoh, J. H. & Paulaitis, M. E. Relating interactions between neurofilaments to the structure of axonal neurofilament distributions through polymer brush models. Biophys. J. 82, 2360–2372 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zackroff, R. V. & Goldman, R. D. In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells. Proc. Natl Acad. Sci. USA 76, 6226–6230 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vikstrom, K. L., Lim, S. S., Goldman, R. D. & Borisy, G. G. Steady state dynamics of intermediate filament networks. J. Cell Biol. 118, 121–129 (1992).

    CAS  PubMed  Google Scholar 

  9. Prahlad, V., Yoon, M., Moir, R. D., Vale, R. D. & Goldman, R. D. Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J. Cell Biol. 143, 159–170 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon, M., Moir, R. D., Prahlad, V. & Goldman, R. D. Motile properties of vimentin intermediate filament networks in living cells. J. Cell Biol. 143, 147–157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vikstrom, K. L., Borisy, G. G. & Goldman, R. D. Dynamic aspects of intermediate filament networks in BHK-21 cells. Proc. Natl Acad. Sci. USA 86, 549–553 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Helfand, B. T., Loomis, P., Yoon, M. & Goldman, R. D. Rapid transport of neural intermediate filament protein. J. Cell Sci. 116, 2345–2359 (2003). Provides an overview of the transport of the different forms of intermediate-filament protein.

    CAS  PubMed  Google Scholar 

  13. Helfand, B. T., Mikami, A., Vallee, R. B. & Goldman, R. D. A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J. Cell Biol. 157, 795–806 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldman, R. D. The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J. Cell Biol. 51, 752–762 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gurland, G. & Gundersen, G. G. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J. Cell Biol. 131, 1275–1290 (1995).

    CAS  PubMed  Google Scholar 

  16. Kreitzer, G., Liao, G. & Gundersen, G. G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 10, 1105–1118 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoon, K. H. et al. Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J. Cell Biol. 153, 503–516 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ho, C. L., Martys, J. L., Mikhailov, A., Gundersen, G. G. & Liem, R. K. Novel features of intermediate filament dynamics revealed by green fluorescent protein chimeras. J. Cell Sci. 111, 1767–1778 (1998).

    CAS  PubMed  Google Scholar 

  19. Windoffer, R. & Leube, R. E. Detection of cytokeratin dynamics by time-lapse fluorescence microscopy in living cells. J. Cell Sci. 112, 4521–4534 (1999).

    CAS  PubMed  Google Scholar 

  20. Roy, S. et al. Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J. Neurosci. 20, 6849–6861 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, L. & Brown, A. Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Mol. Biol. Cell 12, 3257–3267 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, L., Ho, C. L., Sun, D., Liem, R. K. & Brown, A. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nature Cell Biol. 2, 137–141 (2000).

    CAS  PubMed  Google Scholar 

  23. Shah, J. V., Flanagan, L. A., Janmey, P. A. & Leterrier, J. F. Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol. Biol. Cell 11, 3495–3508 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gyoeva, F. K. & Gelfand, V. I. Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature 353, 445–448 (1991). The first description of an interaction between a microtubule-based motor and intermediate filaments.

    CAS  PubMed  Google Scholar 

  25. Navone, F. et al. Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. J. Cell Biol. 117, 1263–1275 (1992).

    CAS  PubMed  Google Scholar 

  26. Prahlad, V., Helfand, B. T., Langford, G. M., Vale, R. D. & Goldman, R. D. Fast transport of neurofilament protein along microtubules in squid axoplasm. J. Cell Sci. 113, 3939–3946 (2000).

    CAS  PubMed  Google Scholar 

  27. Yabe, J. T., Jung, C., Chan, W. K. & Shea, T. B. Phospho-dependent association of neurofilament proteins with kinesin in situ. Cell Motil. Cytoskeleton 45, 249–262 (2000).

    CAS  PubMed  Google Scholar 

  28. Yabe, J. T., Pimenta, A. & Shea, T. B. Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J. Cell Sci. 112, 3799–3814 (1999).

    CAS  PubMed  Google Scholar 

  29. Liao, G. & Gundersen, G. G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797–9803 (1998).

    CAS  PubMed  Google Scholar 

  30. Avsiuk, A., Minin, A. A. & Gyoeva, F. K. Kinesin associated with vimentin intermediate filaments contains a specific light chain. Doklady Biol. Sci. 345, 644–646 (1995).

    Google Scholar 

  31. Allan, V. Dynactin. Curr. Biol. 10, R432 (2000).

    CAS  PubMed  Google Scholar 

  32. King, S. M. Organization and regulation of the dynein microtubule motor. Cell Biol. Int. 27, 213–215 (2003).

    CAS  PubMed  Google Scholar 

  33. LaMonte, B. H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727 (2002).

    CAS  PubMed  Google Scholar 

  34. Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 467–484 (1997).

    Google Scholar 

  35. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    CAS  PubMed  Google Scholar 

  36. Osborn, M., Franke, W. & Weber, K. Direct demonstration of the presence of two immunologically distinct intermediate-sized filament systems in the same cell by double immunofluorescence microscopy. Vimentin and cytokeratin fibers in cultured epithelial cells. Exp. Cell Res. 125, 37–46 (1980).

    CAS  PubMed  Google Scholar 

  37. Windoffer, R. & Leube, R. E. De novo formation of cytokeratin filament networks originates from the cell cortex in A-431 cells. Cell Motil. Cytoskeleton 50, 33–44 (2001).

    CAS  PubMed  Google Scholar 

  38. Hollenbeck, P. J., Bershadsky, A. D., Pletjushkina, O. Y., Tint, I. S. & Vasiliev, J. M. Intermediate filament collapse is an ATP-dependent and actin-dependent process. J. Cell Sci. 92, 621–631 (1989). An early clue that intermediate filaments interact with actin.

    CAS  PubMed  Google Scholar 

  39. Tint, I. S., Hollenbeck, P. J., Verkhovsky, A. B., Surgucheva, I. G. & Bershadsky, A. D. Evidence that intermediate filament reorganization is induced by ATP-dependent contraction of the actomyosin cortex in permeabilized fibroblasts. J. Cell Sci. 98, 375–384 (1991).

    CAS  PubMed  Google Scholar 

  40. Green, K. J., Talian, J. C. & Goldman, R. D. Relationship between intermediate filaments and microfilaments in cultured fibroblasts: evidence for common foci during cell spreading. Cell Motil. Cytoskeleton 6, 408–418 (1986).

    Google Scholar 

  41. Green, K. J., Geiger, B., Jones, J. C., Talian, J. C. & Goldman, R. D. The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes. J. Cell Biol. 104, 1389–1402 (1987).

    CAS  PubMed  Google Scholar 

  42. Weber, K. L. & Bement, W. M. F-actin serves as a template for cytokeratin organization in cell free extracts. J. Cell Sci. 115, 1373–1382 (2002).

    CAS  PubMed  Google Scholar 

  43. Rao, M. V. et al. Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J. Cell Biol. 159, 279–290 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hisanaga, S. & Hirokawa, N. Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing. J. Mol. Biol. 202, 297–305 (1988).

    CAS  PubMed  Google Scholar 

  45. Miyasaka, H., Okabe, S., Ishiguro, K., Uchida, T. & Hirokawa, N. Interaction of the tail domain of high molecular weight subunits of neurofilaments with the COOH-terminal region of tubulin and its regulation by tau protein kinase II. J. Biol. Chem. 268, 22695–22702 (1993).

    CAS  PubMed  Google Scholar 

  46. Julien, J. P., Cote, F. & Collard, J. F. Mice overexpressing the human neurofilament heavy gene as a model of ALS. Neurobiol. Aging 16, 487–490 (1995).

    CAS  PubMed  Google Scholar 

  47. Collard, J. F., Cote, F. & Julien, J. P. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61–64 (1995).

    CAS  PubMed  Google Scholar 

  48. Marszalek, J. R. et al. Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J. Cell Biol. 135, 711–724 (1996).

    CAS  PubMed  Google Scholar 

  49. Zhu, Q., Lindenbaum, M., Levavasseur, F., Jacomy, H. & Julien, J. P. Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin β, β′-iminodipropionitrile. J. Cell Biol. 143, 183–193 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Eyer, J. & Leterrier, J. F. Influence of the phosphorylation state of neurofilament proteins on the interactions between purified filaments in vitro. Biochem. J. 252, 655–660 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gotow, T., Tanaka, T., Nakamura, Y. & Takeda, M. Dephosphorylation of the largest neurofilament subunit protein influences the structure of crossbridges in reassembled neurofilaments. J. Cell Sci. 107, 1949–1957 (1994).

    CAS  PubMed  Google Scholar 

  52. Gotow, T. & Tanaka, J. Phosphorylation of neurofilament H subunit as related to arrangement of neurofilaments. J. Neurosci. Res. 37, 691–713 (1994).

    CAS  PubMed  Google Scholar 

  53. Leterrier, J. F., Kas, J., Hartwig, J., Vegners, R. & Janmey, P. A. Mechanical effects of neurofilament cross-bridges. Modulation by phosphorylation, lipids, and interactions with F-actin. J. Biol. Chem. 271, 15687–15694 (1996).

    CAS  PubMed  Google Scholar 

  54. Sanchez, I. et al. Local control of neurofilament accumulation during radial growth of myelinating axons in vivo. Selective role of site-specific phosphorylation. J. Cell Biol. 151, 1013–1024 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hunt, A. J., Gittes, F. & Howard, J. The force exerted by a single kinesin molecule against a viscous load. Biophys. J. 67, 766–781 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bulinski, J. C., McGraw, T. E., Gruber, D., Nguyen, H. L. & Sheetz, M. P. Overexpression of MAP4 inhibits organelle motility and trafficking in vivo. J. Cell Sci. 110, 3055–3064 (1997).

    CAS  PubMed  Google Scholar 

  57. Ebneth, A. et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J. Cell Biol. 143, 777–794 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Trinczek, B., Ebneth, A., Mandelkow, E. M. & Mandelkow, E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J. Cell Sci. 112, 2355–2367 (1999).

    CAS  PubMed  Google Scholar 

  59. Stamer, K., Vogel, R., Thies, E., Mandelkow, E. & Mandelkow, E. M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051–1063 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bloom, G. S. & Vallee, R. B. Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J. Cell Biol. 96, 1523–1531 (1983). An early indication that MAPs bind to intermediate filaments.

    CAS  PubMed  Google Scholar 

  61. Seitz, A. et al. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J. 21, 4896–4905 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Paschal, B. M., Obar, R. A. & Vallee, R. B. Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin. Nature 342, 569–572 (1989).

    CAS  PubMed  Google Scholar 

  63. Svitkina, T. M., Verkhovsky, A. B. & Borisy, G. G. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J. Cell Biol. 135, 991–1007 (1996). A vivid demonstration of the intermediate-filament-associated protein, plectin, forming bridges with microtubules and microfilaments.

    CAS  PubMed  Google Scholar 

  64. Leung, C. L., Green, K. J. & Liem, R. K. Plakins: a family of versatile cytolinker proteins. Trends Cell Biol. 12, 37–45 (2002).

    CAS  PubMed  Google Scholar 

  65. Bernier, G. et al. Dystonin expression in the developing nervous system predominates in the neurons that degenerate in dystonia musculorum mutant mice. Mol. Cell Neurosci. 6, 509–520 (1995).

    CAS  PubMed  Google Scholar 

  66. Guo, L. et al. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81, 233–243 (1995).

    CAS  PubMed  Google Scholar 

  67. Leung, C. L., Sun, D. & Liem, R. K. The intermediate filament protein peripherin is the specific interaction partner of mouse BPAG1-n (dystonin) in neurons. J. Cell Biol. 144, 435–446 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shea, T. B., Beermann, M. L. & Fischer, I. Transient requirement for vimentin in neuritogenesis: intracellular delivery of anti-vimentin antibodies and antisense oligonucleotides inhibit neurite initiation but not elongation of existing neurites in neuroblastoma. J. Neurosci Res. 36, 66–76 (1993).

    CAS  PubMed  Google Scholar 

  69. Cochard, P. & Paulin, D. Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J. Neurosci. 4, 2080–2094 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Troy, C. M., Muma, N. A., Greene, L. A., Price, D. L. & Shelanski, M. L. Regulation of peripherin and neurofilament expression in regenerating rat motor neurons. Brain Res. 529, 232–238 (1990).

    CAS  PubMed  Google Scholar 

  71. Hoffman, P. N. et al. Neurofilament gene expression: a major determinant of axonal caliber. Proc. Natl Acad. Sci. USA 84, 3472–3476 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lasek, R. J., Oblinger, M. M. & Drake, P. F. Molecular biology of neuronal geometry: expression of neurofilament genes influences axonal diameter. Cold Spring Harb. Symp. Quant. Biol. 48, 731–744 (1983).

    CAS  PubMed  Google Scholar 

  73. Gervasi, C., Stewart, C. B. & Szaro, B. G. Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons. J. Comp. Neurol. 423, 512–531 (2000).

    CAS  PubMed  Google Scholar 

  74. Troy, C. M., Brown, K., Greene, L. A. & Shelanski, M. L. Ontogeny of the neuronal intermediate filament protein, peripherin, in the mouse embryo. Neuroscience 36, 217–237 (1990).

    CAS  PubMed  Google Scholar 

  75. Undamatla, J. & Szaro, B. G. Differential expression and localization of neuronal intermediate filament proteins within newly developing neurites in dissociated cultures of Xenopus laevis embryonic spinal cord. Cell Motil. Cytoskeleton 49, 16–32 (2001).

    CAS  PubMed  Google Scholar 

  76. Aletta, J. M. et al. Relationship between the nerve growth factor-regulated clone 73 gene product and the 58-kilodalton neuronal intermediate filament protein (peripherin). J. Neurochem. 51, 1317–1320 (1988).

    CAS  PubMed  Google Scholar 

  77. Aletta, J. M., Shelanski, M. L. & Greene, L. A. Phosphorylation of the peripherin 58-kDa neuronal intermediate filament protein. Regulation by nerve growth factor and other agents. J. Biol. Chem. 264, 4619–4627 (1989).

    CAS  PubMed  Google Scholar 

  78. Leonard, D. G., Gorham, J. D., Cole, P., Greene, L. A. & Ziff, E. B. A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein. J. Cell Biol. 106, 181–193 (1988).

    CAS  PubMed  Google Scholar 

  79. Leonard, D. G., Ziff, E. B. & Greene, L. A. Identification and characterization of mRNAs regulated by nerve growth factor in PC12 cells. Mol. Cell Biol. 7, 3156–3167 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Oblinger, M. M., Wong, J. & Parysek, L. M. Axotomy-induced changes in the expression of a type III neuronal intermediate filament gene. J. Neurosci. 9, 3766–3775 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hoffman, P. N., Thompson, G. W., Griffin, J. W. & Price, D. L. Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J. Cell Biol. 101, 1332–1340 (1985).

    CAS  PubMed  Google Scholar 

  82. Wong, J. & Oblinger, M. M. Differential regulation of peripherin and neurofilament gene expression in regenerating rat DRG neurons. J. Neurosci. Res. 27, 332–341 (1990).

    CAS  PubMed  Google Scholar 

  83. Helfand, B. T., Mendez, M. G., Pugh, J., Delsert, C. & Goldman, R. D. A role for intermediate filaments in determining and maintaining the shape of nerve cells. Mol. Biol. Cell. 14, 5069–5081 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Weinstein, D. E., Shelanski, M. L. & Liem, R. K. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J. Cell Biol. 112, 1205–1213 (1991).

    CAS  PubMed  Google Scholar 

  85. Lepekhin, E. A. et al. Intermediate filaments regulate astrocyte motility. J. Neurochem. 79, 617–625 (2001).

    CAS  PubMed  Google Scholar 

  86. Goldman, R. D., Khuon, S., Chou, Y. H., Opal, P. & Steinert, P. M. The function of intermediate filaments in cell shape and cytoskeletal integrity. J. Cell Biol. 134, 971–983 (1996). Shows the central role that intermediate filaments have in stabilizing other cytoskeletal networks and in maintaining cell shape.

    CAS  PubMed  Google Scholar 

  87. Eckes, B. et al. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J. Cell Sci. 111, 1897–1907 (1998).

    CAS  PubMed  Google Scholar 

  88. Eckes, B. et al. Impaired wound healing in embryonic and adult mice lacking vimentin. J. Cell Sci. 113, 2455–2462 (2000). One of the first papers showing that the deletion of vimentin intermediate filaments has a profound phenotype in mice.

    CAS  PubMed  Google Scholar 

  89. Pekny, M. et al. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol. 145, 503–514 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane extracellular matrix–cytoskeleton crosstalk. Nature Rev. Mol. Cell Biol. 2, 793–805 (2001).

    CAS  Google Scholar 

  91. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    CAS  PubMed  Google Scholar 

  92. Allen, W. E., Jones, G. E., Pollard, J. W. & Ridley, A. J. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell Sci. 110, 707–720 (1997).

    CAS  PubMed  Google Scholar 

  93. Rottner, K., Hall, A. & Small, J. V. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol. 9, 640–648 (1999).

    CAS  PubMed  Google Scholar 

  94. Kaverina, I., Krylyshkina, O. & Small, J. V. Regulation of substrate adhesion dynamics during cell motility. Int. J. Biochem. Cell Biol. 34, 746–761 (2002).

    CAS  PubMed  Google Scholar 

  95. Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, E97–E100 (2002).

    CAS  PubMed  Google Scholar 

  96. Tsuruta, D. & Jones, J. C. The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J. Cell Sci. 116, 4977–4984 (2003). Shows the role of intermediate filaments in regulating focal-contact structure and the stability of cell–substrate adhesion.

    CAS  PubMed  Google Scholar 

  97. Correia, I., Chu, D., Chou, Y. H., Goldman, R. D. & Matsudaira, P. Integrating the actin and vimentin cytoskeletons: adhesion-dependent formation of fimbrin–vimentin complexes in macrophages. J. Cell Biol. 146, 831–842 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mabuchi, K., Li, B., Ip, W. & Tao, T. Association of calponin with desmin intermediate filaments. J. Biol. Chem. 272, 22662–22666 (1997).

    CAS  PubMed  Google Scholar 

  99. Gonzales, M. et al. Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol. Biol. Cell 12, 85–100 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Steinbock, F. A. & Wiche, G. Plectin: a cytolinker by design. Biol. Chem. 380, 151–158 (1999).

    CAS  PubMed  Google Scholar 

  101. Andra, K., Nikolic, B., Stocher, M., Drenckhahn, D. & Wiche, G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 12, 3442–3451 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wiche, G. Role of plectin in cytoskeleton organization and dynamics. J. Cell Sci. 111, 2477–2486 (1998).

    CAS  PubMed  Google Scholar 

  103. Herrmann, H. & Wiche, G. Specific in situ phosphorylation of plectin in detergent-resistant cytoskeletons from cultured Chinese hamster ovary cells. J. Biol. Chem. 258, 14610–14618 (1983).

    CAS  PubMed  Google Scholar 

  104. Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J. & Winder, S. J. Functional plasticity of CH domains. FEBS Lett. 513, 98–106 (2002).

    CAS  PubMed  Google Scholar 

  105. Eriksson, J. E. et al. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J. Cell Sci. 117, 919–932 (2003).

    Google Scholar 

  106. Muslin, A. J. & Xing, H. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal. 12, 703–709 (2000).

    CAS  PubMed  Google Scholar 

  107. Meyer, G. & Feldman, E. L. Signaling mechanisms that regulate actin-based motility processes in the nervous system. J. Neurochem. 83, 490–503 (2002).

    CAS  PubMed  Google Scholar 

  108. Wittmann, T. & Waterman-Storer, C. M. Cell motility: can Rho GTPases and microtubules point the way? J. Cell Sci. 114, 3795–3803 (2001).

    CAS  PubMed  Google Scholar 

  109. Valgeirsdottir, S. et al. PDGF induces reorganization of vimentin filaments. J. Cell Sci. 111, 1973–1980 (1998).

    CAS  PubMed  Google Scholar 

  110. Meriane, M. et al. Cdc42Hs and Rac1 GTPases induce the collapse of the vimentin intermediate filament network. J. Biol. Chem. 275, 33046–33052 (2000).

    CAS  PubMed  Google Scholar 

  111. Chan, W. et al. Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase. Eur. J. Cell Biol. 81, 692–701 (2002).

    CAS  PubMed  Google Scholar 

  112. Schlessinger, J. & Lemmon, M. A. SH2 and PTB domains in tyrosine kinase signaling. Sci. STKE 191, RE12 (2003).

    Google Scholar 

  113. Goto, H. et al. Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK). Genes Cells 7, 91–97 (2002).

    CAS  PubMed  Google Scholar 

  114. Wittmann, T., Bokoch, G. M. & Waterman-Storer, C. M. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J. Cell Biol. 161, 845–851 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sin, W. C., Chen, X. Q., Leung, T. & Lim, L. RhoA-binding kinase α translocation is facilitated by the collapse of the vimentin intermediate filament network. Mol. Cell Biol. 18, 6325–6339 (1998). Shows that the frequently observed 'collapse' of intermediate filaments, which is induced on activation of Rho GTPases, actually regulates ROKα activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kosako, H. et al. Specific accumulation of Rho-associated kinase at the cleavage furrow during cytokinesis: cleavage furrow-specific phosphorylation of intermediate filaments. Oncogene 18, 2783–2788 (1999).

    CAS  PubMed  Google Scholar 

  117. Yasui, Y. et al. Protein kinases required for segregation of vimentin filaments in mitotic process. Oncogene 20, 2868–2876 (2001).

    CAS  PubMed  Google Scholar 

  118. Goto, H. et al. Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J. Biol. Chem. 273, 11728–11736 (1998).

    CAS  PubMed  Google Scholar 

  119. Liao, J. & Omary, M. B. 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J. Cell Biol. 133, 345–357 (1996).

    CAS  PubMed  Google Scholar 

  120. Ku, N. O., Liao, J. & Omary, M. B. Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J. 17, 1892–1906 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ku, N. O., Michie, S., Resurreccion, E. Z., Broome, R. L. & Omary, M. B. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl Acad. Sci. USA 99, 4373–3478 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Toivola, D. M. et al. Disturbances in hepatic cell-cycle regulation in mice with assembly-deficient keratins 8/18. Hepatology 34, 1174–1183 (2001). Presents evidence that keratin intermediate-filament interactions with the signalling factor 14-3-3 are involved in the regulation of cell-cycle progression in hepatocytes.

    CAS  PubMed  Google Scholar 

  123. Reichelt, J. & Magin, T. M. Hyperproliferation, induction of c-Myc and 14-3-3σ, but no cell fragility in keratin-10-null mice. J. Cell Sci. 115, 2639–2650 (2002).

    CAS  PubMed  Google Scholar 

  124. Tzivion, G., Luo, Z. J. & Avruch, J. Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo. J. Biol. Chem. 275, 29772–29778 (2000). Shows the importance of vimentin phosphorylation in the regulation of 14-3-3 activity.

    CAS  PubMed  Google Scholar 

  125. Eriksson, J. E. et al. Cytoskeletal integrity in interphase cells requires protein phosphatase activity. Proc. Natl Acad. Sci. USA 89, 11093–11097 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Gohla, A. & Bokoch, G. M. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr. Biol. 12, 1704–1710 (2002).

    CAS  PubMed  Google Scholar 

  127. Birkenfeld, J., Betz, H. & Roth, D. Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3ζ. Biochem. J. 369, 45–54 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hashiguchi, M., Sobue, K. & Paudel, H. K. 14-3-3ζ is an effector of tau protein phosphorylation. J. Biol. Chem. 275, 25247–25254 (2000).

    CAS  PubMed  Google Scholar 

  129. Agarwal-Mawal, A. et al. 14-3-3 connects glycogen synthase kinase-3β to tau within a brain microtubule-associated tau phosphorylation complex. J. Biol. Chem. 278, 12722–12728 (2003).

    CAS  PubMed  Google Scholar 

  130. Ichimura, T. et al. Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein. Biochemistry 41, 5566–5572 (2002).

    CAS  PubMed  Google Scholar 

  131. Bray, D. Cell Movements. From Molecules to Motility. 2nd edn (Garland Publishing, New York, USA, 2001).

    Google Scholar 

  132. Herrmann, H. & Aebi, U. Intermediate filament assembly: fibrillogenesis is driven by decisive dimer–dimer interactions. Curr. Opin. Struct. Biol. 8, 177–185 (1998).

    CAS  PubMed  Google Scholar 

  133. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figure 2 was kindly provided by H. Herrmann (German Cancer Research Center, Heidelberg, Germany) and U. Aebi (Maurice E. Müller Institute for Structural Biology, Biozentrum Basel, Switzerland). The authors would like to acknowledge the support of a MERIT Award from the National Institute of General Medical Sciences, and grants from the National Institute of Dental Research, and the National Heart, Lung and Blood Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Interpro

CH-domain

Swiss-Prot

BPAG1

desmin

GFAP

α-internexin

Lamin A

Lamin B1

Lamin B2

MAP2

MAP4

myosin Va

nestin

NF-H

NF-L

NF-M

peripherin

plectin

tau

vimentin

FURTHER INFORMATION

Robert Goldman's laboratory

Glossary

KERATIN

Obligate heteropolymer intermediate filaments that are composed of type-I and type-II intermediate-filament proteins, which are expressed mainly in epithelial cells.

VIMENTIN

Type-III, homopolymer intermediate filaments that are expressed in mesenchymal and some ectodermal cells.

NEUROFILAMENT

Type-IV, heteropolymer intermediate filaments that are composed of three neurofilament subunits (NF-L, NF-M and NF-H), which are expressed mainly in neurons.

SPREADING PROCESS

The process of cells spreading after trypsinization and re-plating. Visualization of intermediate-filament particles and squiggles in the peripheral regions of the cells is optimized during the early stages of cell spreading.

CYTOPLASMIC DYNEIN

A microtubule motor that can bind to and move towards the minus end of microtubules.

FRAP

(fluorescence recovery after photobleaching). A live-cell imaging technique used to study the mobility of fluorescent molecules. A pulse of high intensity light is used to irreversibly photobleach a population of fluorophores in a target region. Recovery of fluorescence in the bleached region represents movement of fluorophores into that region.

PERIPHERIN

Type-III, homopolymer intermediate filaments that are expressed in peripheral and enteric neurons, as well as in PC12 cells.

CONVENTIONAL KINESIN

A microtubule motor that can bind to and move towards the plus ends of microtubules.

DYNAMITIN

A component of dynactin, a large complex thought to be involved in dynein–cargo interactions. Overexpression of dynamitin leads to disruption of dynein function.

WOUND-SCRAPE ASSAY

An assay used to assess cell migration. A scrape is made in a confluent monolayer of cells, leaving an area devoid of cells, followed by microscopy to monitor the migration of cells into the wound.

FOCAL COMPLEXES

Small (1 μm diameter), dot-like adhesion structures that are present mainly at the edges of the lamellipodium.

LAMELLIPODIA

Broad, flat protrusions at the leading edge of a moving cell that are enriched with a branched network of actin filaments.

FILOPODIA

Thin cellular processes containing long, unbranched, parallel bundles of actin filaments.

PODOSOMES

Extracellular-matrix adhesions that are found in various malignant cells and in some normal cells, including macrophages and osteoclasts. Podosomes are small (0.5 μm diameter) cylindrical structures containing typical focal-adhesion proteins, such as vinculin and paxillin.

14-3-3 PROTEINS

A family of proteins and protein domains that bind to serine/threonine-phosphorylated residues in a context-specific manner. They bind and regulate key proteins involved in various physiological processes.

RHO-GTPase FAMILY

Ras-related small GTPases that function as molecular switches to control signal-transduction pathways. They have been traditionally characterized to function as regulators of actin and, to a lesser extent, microtubule dynamics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Goldman, R. Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5, 601–613 (2004). https://doi.org/10.1038/nrm1438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing