Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cell biology of lysosomal storage disorders

Key Points

  • Lysosomes are membrane-bound organelles that contain digestive enzymes that are responsible for the degradation of macromolecules such as proteins, lipids and carbohydrates.

  • Lysosomal storage disorders (LSDs) are a class of inherited metabolic diseases. They are caused by the defective activity of soluble lysosomal enzymes or integral membrane proteins, which results in the intra-lysosomal accumulation of undegraded metabolites.

  • A number of new proteins that are involved in LSDs have recently been identified, including an enzyme that is required for optimal sulphatase activity (defects in which cause multiple sulphatase deficiency) and soluble and integral membrane proteins that are involved in the ceroid lipofuscinoses.

  • Little is known about how and why the intra-lysosomal accumulation of undegraded metabolites causes disease pathology, but the extensive range of disease symptoms indicates that many secondary biochemical and cellular pathways are activated in different LSDs.

  • Potential changes in lysosomal stability and integrity, in intracellular trafficking and intracellular signalling, as well as alterations in secondary biochemical pathways and in gene expression, could be involved in LSD pathology.

  • The most effective treatment for LSDs would be somatic gene therapy, but the prospect of this becoming available soon is remote. At present, treatments are mainly limited to enzyme-replacement therapy and substrate-reduction therapy.

  • New therapies should arise as the secondary biochemical and cellular pathways that are altered in LSDs are elucidated.

Abstract

Lysosomal storage disorders, of which more than 40 are known, are caused by the defective activity of lysosomal proteins, which results in the intra-lysosomal accumulation of undegraded metabolites. Despite years of study of the genetic and molecular bases of lysosomal storage disorders, little is known about the events that lead from this intra-lysosomal accumulation to pathology. Here, we summarize the biochemistry of lysosomal storage disorders. We then discuss downstream cellular pathways that are potentially affected in these disorders and that might help us to delineate their pathological mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The defect in multiple sulphatase deficiency.
Figure 2: The biochemical and cellular basis of lysosomal storage disorders.
Figure 3: A possible roadmap of the pathology of lysosomal storage disorders.
Figure 4: Therapies for lysosomal storage disorders.

Similar content being viewed by others

References

  1. de Duve, C. Exploring cells with a centrifuge. Science 189, 186–194 (1975). This classic paper describes the discovery of various intracellular organelles, including lysosomes, that led to de Duve being awarded a Nobel prize in 1974.

    Google Scholar 

  2. Sandhoff, K. & Kolter, T. Topology of glycosphingolipid degradation. Trends Cell Biol. 6, 98–103 (1996).

    CAS  PubMed  Google Scholar 

  3. Journet, A., Chapel, A., Kieffer, S., Roux, F. & Garin, J. Proteomic analysis of human lysosomes: application to monocytic and breast cancer cells. Proteomics 2, 1026–1040 (2002).

    CAS  PubMed  Google Scholar 

  4. Eskelinen, E. L., Tanaka, Y. & Saftig, P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13, 137–145 (2003).

    CAS  PubMed  Google Scholar 

  5. Mancini, G. M., Havelaar, A. C. & Verheijen, F. W. Lysosomal transport disorders. J. Inherit. Metab. Dis. 23, 278–292 (2000).

    CAS  PubMed  Google Scholar 

  6. Kornfeld, S. & Sly, W. S. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R. et al.) 3469–3482 (McGraw–Hill Inc., Columbus, USA, 2001).

    Google Scholar 

  7. Callahan, J. W. Molecular basis of GM1 gangliosidosis and Morquio disease, type B. Structure–function studies of lysosomal β-galactosidase and the non-lysosomal β-galactosidase-like protein. Biochim. Biophys. Acta 1455, 85–103 (1999).

    CAS  PubMed  Google Scholar 

  8. Li, Y. T., Maskos, K., Chou, C. W., Cole, R. B. & Li, S. C. Presence of an unusual GM2 derivative, taurine-conjugated GM2, in Tay–Sachs brain. J. Biol. Chem. 278, 35286–35291 (2003).

    CAS  PubMed  Google Scholar 

  9. Hopwood, J. J. & Ballabio, A. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R. et al.) 3725–3732 (McGraw–Hill Inc., Columbus, USA, 2001).

    Google Scholar 

  10. Schmidt, B., Selmer, T., Ingendoh, A. & von Figura, K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82, 271–278 (1995).

    CAS  PubMed  Google Scholar 

  11. Cosma, M. P. et al. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113, 445–456 (2003).

    CAS  PubMed  Google Scholar 

  12. Dierks, T. et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme. Cell 113, 435–444 (2003). An excellent study in which the gene that is affected in MSD was first described and mutations that cause this disease were identified.

    CAS  PubMed  Google Scholar 

  13. Ostrowska, H., Krukowska, K., Kalinowska, J., Orlowska, M. & Lengiewicz, I. Lysosomal high molecular weight multienzyme complex. Cell Mol. Biol. Lett. 8, 19–24 (2003).

    CAS  PubMed  Google Scholar 

  14. Zhou, X. Y. et al. Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells. Genes Dev. 9, 2623–2634 (1995).

    CAS  PubMed  Google Scholar 

  15. Leimig, T. et al. Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood 99, 3169–3178 (2002).

    CAS  PubMed  Google Scholar 

  16. Jolly, R. D., Brown, S., Das, A. M. & Walkley, S. U. Mitochondrial dysfunction in the neuronal ceroid-lipofuscinoses (Batten disease). Neurochem. Int. 40, 565–571 (2002).

    CAS  PubMed  Google Scholar 

  17. Hofmann, S. L. & Peltonen, L. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R. et al.) 3877–3894 (McGraw–Hill Inc., Columbus, USA, 2001).

    Google Scholar 

  18. Cooper, J. D. Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis. Curr. Opin. Neurol. 16, 121–128 (2003).

    CAS  PubMed  Google Scholar 

  19. Linder, M. E. & Deschenes, R. J. New insights into the mechanisms of protein palmitoylation. Biochemistry 42, 4311–4320 (2003).

    CAS  PubMed  Google Scholar 

  20. Hofmann, S. L. et al. Neuronal ceroid lipofuscinoses caused by defects in soluble lysosomal enzymes (CLN1 and CLN2). Curr. Mol. Med. 2, 423–437 (2002).

    CAS  PubMed  Google Scholar 

  21. Gupta, P. et al. Disruption of PPT2 in mice causes an unusual lysosomal storage disorder with neurovisceral features. Proc. Natl Acad. Sci. USA 100, 12325–12330 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, Y., Ramirez-Montealegre, D. & Pearce, D. A. A role in vacuolar arginine transport for yeast Btn1p and for human CLN3, the protein defective in Batten disease. Proc. Natl Acad. Sci. USA 100, 15458–15462 (2003). A recent study in which the function of the CLN3 protein was first identified on the basis of analysing the function of the CLN3 orthologue Btn1 in S. cerevisiae . An S. cerevisiae transport defect that results from the ablation of the gene for Btn1 could be reversed by expressing either Btn1 or CLN3.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, H. et al. Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am. J. Hum. Genet. 70, 324–335 (2002).

    CAS  PubMed  Google Scholar 

  24. Wheeler, R. B. et al. The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein. Am. J. Hum. Genet. 70, 537–542 (2002).

    CAS  PubMed  Google Scholar 

  25. Isosomppi, J., Vesa, J., Jalanko, A. & Peltonen, L. Lysosomal localization of the neuronal ceroid lipofuscinosis CLN5 protein. Hum. Mol. Genet. 11, 885–891 (2002).

    CAS  PubMed  Google Scholar 

  26. Verheijen, F. W. et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nature Genet. 23, 462–465 (1999).

    CAS  PubMed  Google Scholar 

  27. Town, M. et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nature Genet. 18, 319–324 (1998).

    CAS  PubMed  Google Scholar 

  28. Simons, K. & Gruenberg, J. Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol. 10, 459–462 (2000).

    CAS  PubMed  Google Scholar 

  29. Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000). Although LAMP2 was known to be an abundant lysosomal structural protein, this study was the first to link defects in this protein to a known LSD.

    CAS  PubMed  Google Scholar 

  30. Sandhoff, K., Kolter, T. & Harzer, K. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R. et al.) 3371–3388 (McGraw–Hill Inc., Columbus, USA, 2001).

    Google Scholar 

  31. Dittmer, F. et al. Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J. Cell Sci. 112, 1591–1597 (1999).

    CAS  PubMed  Google Scholar 

  32. Kaufman, R. J. Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110, 1389–1398 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferri, K. F. & Kroemer, G. Organelle-specific initiation of cell death pathways. Nature Cell Biol. 3, E255–E263 (2001).

    CAS  PubMed  Google Scholar 

  34. Castino, R., Demoz, M. & Isidoro, C. Destination 'lysosome': a target organelle for tumour cell killing? J. Mol. Recognit. 16, 337–348 (2003).

    CAS  PubMed  Google Scholar 

  35. Yang, A. J., Chandswangbhuvana, D., Margol, L. & Glabe, C. G. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Aβ1–42 pathogenesis. J. Neurosci. Res. 52, 691–698 (1998).

    CAS  PubMed  Google Scholar 

  36. Zhang, F. et al. Characterization of ABCB9, an ATP binding cassette protein associated with lysosomes. J. Biol. Chem. 275, 23287–23294 (2000).

    CAS  PubMed  Google Scholar 

  37. Vulevic, B. et al. Cloning and characterization of human adenosine 5′-triphosphate-binding cassette, sub-family A, transporter 2 (ABCA2). Cancer Res. 61, 3339–3347 (2001).

    CAS  PubMed  Google Scholar 

  38. Raggers, R. J., Pomorski, T., Holthuis, J. C., Kalin, N. & van Meer, G. Lipid traffic: the ABC of transbilayer movement. Traffic 1, 226–234 (2000).

    CAS  PubMed  Google Scholar 

  39. Schmitz, G. & Kaminski, W. E. ABCA2: a candidate regulator of neural transmembrane lipid transport. Cell Mol. Life Sci. 59, 1285–1295 (2002).

    CAS  PubMed  Google Scholar 

  40. Choi, H. Y. et al. Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann–Pick type C disease. J. Biol. Chem. 278, 32569–32577 (2003).

    CAS  PubMed  Google Scholar 

  41. Jaiswal, J. K., Andrews, N. W. & Simon, S. M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159, 625–635 (2002). A study that showed a link between intracellular Ca2+ levels and the fusion of secretory lysosomes with the plasma membrane, which might have ramifications for understanding the pathology of LSDs.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Andrews, N. W. Regulated secretion of conventional lysosomes. Trends Cell Biol. 10, 316–321 (2000).

    CAS  PubMed  Google Scholar 

  43. Reddy, A., Caler, E. V. & Andrews, N. W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001).

    CAS  PubMed  Google Scholar 

  44. Linke, M., Herzog, V. & Brix, K. Trafficking of lysosomal cathepsin B–green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J. Cell Sci. 115, 4877–4889 (2002).

    CAS  PubMed  Google Scholar 

  45. Marks, D. L. & Pagano, R. E. Endocytosis and sorting of glycosphingolipids in sphingolipid storage disease. Trends Cell Biol. 12, 605–613 (2002).

    CAS  PubMed  Google Scholar 

  46. Sillence, D. J. & Platt, F. M. Storage diseases: new insights into sphingolipid functions. Trends Cell Biol. 13, 195–203 (2003).

    CAS  PubMed  Google Scholar 

  47. Chen, C. S., Patterson, M. C., Wheatley, C. L., O'Brien, J. F. & Pagano, R. E. Broad screening test for sphingolipid-storage diseases. Lancet 354, 901–905 (1999).

    CAS  PubMed  Google Scholar 

  48. Sillence, D. J. et al. Glucosylceramide modulates membrane traffic along the endocytic pathway. J. Lipid Res. 43, 1837–1845 (2002).

    CAS  PubMed  Google Scholar 

  49. Puri, V. et al. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nature Cell Biol. 1, 386–388 (1999).

    CAS  PubMed  Google Scholar 

  50. Choudhury, A. et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann–Pick C cells. J. Clin. Invest. 109, 1541–1550 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, D. & London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000).

    CAS  PubMed  Google Scholar 

  52. Lai, E. C. Lipid rafts make for slippery platforms. J. Cell Biol. 162, 365–370 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gondre-Lewis, M. C., McGlynn, R. & Walkley, S. U. Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent. Curr. Biol. 13, 1324–1329 (2003). This paper offers a new view of the cause of NPC disease by proposing that the NPC1 protein might be more closely linked to the homeostatic control of glycosphingolipid transport rather than to cholesterol transport.

    CAS  PubMed  Google Scholar 

  54. Pfrieger, F. W. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol. Life Sci. 60, 1158–1171 (2003).

    CAS  PubMed  Google Scholar 

  55. Buccoliero, R., Bodennec, J. & Futerman, A. H. The role of sphingolipids in neuronal development: lessons from models of sphingolipid storage diseases. Neurochem. Res. 27, 565–574 (2002).

    CAS  PubMed  Google Scholar 

  56. Lefrancois, S., Zeng, J., Hassan, A. J., Canuel, M. & Morales, C. R. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 22, 6430–6437 (2003). This recent study showed that the transport pathway of sphingolipid-activator proteins to lysosomes occurs through a new pathway that involves sortilin receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pearce, D. A., Ferea, T., Nosel, S. A., Das, B. & Sherman, F. Action of BTN1, the yeast orthologue of the gene mutated in Batten disease. Nature Genet. 22, 55–58 (1999).

    CAS  PubMed  Google Scholar 

  58. Chattopadhyay, S., Roberts, P. M. & Pearce, D. A. The yeast model for Batten disease: a role for Btn2p in the trafficking of the Golgi-associated vesicular targeting protein, Yif1p. Biochem. Biophys. Res. Commun. 302, 534–538 (2003).

    CAS  PubMed  Google Scholar 

  59. Fares, H. & Greenwald, I. Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nature Genet. 28, 64–68 (2001).

    CAS  PubMed  Google Scholar 

  60. Hersh, B. M., Hartwieg, E. & Horvitz, H. R. The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc. Natl Acad. Sci. USA 99, 4355–4360 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Raychowdhury, M. K. et al. Molecular pathophysiology of mucolipidosis type IV: pH dysregulation of the mucolipin-1 cation channel. Hum. Mol. Genet. 13, 617–627 (2004).

    CAS  PubMed  Google Scholar 

  62. Futerman, A. H. (ed.) Ceramide Signaling (Kluwer Academic/Plenum Publishers, New York, 2003).

    Google Scholar 

  63. Hannun, Y. A. & Obeid, L. M. The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J. Biol. Chem. 277, 25847–25850 (2002).

    CAS  PubMed  Google Scholar 

  64. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    CAS  PubMed  Google Scholar 

  65. Lozano, J. et al. Cell autonomous apoptosis defects in acid sphingomyelinase knockout fibroblasts. J. Biol. Chem. 276, 442–448 (2001).

    CAS  PubMed  Google Scholar 

  66. Li, C. M. et al. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 79, 218–224 (2002).

    CAS  PubMed  Google Scholar 

  67. Hollak, C. E. M., van Weely, S., van Oers, M. H. J. & Aerts, J. M. F. G. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J. Clin. Invest. 93, 1288–1292 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Boot, R. G. et al. Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood 103, 33–39 (2004).

    CAS  PubMed  Google Scholar 

  69. Suzuki, K. et al. Neuronal accumulation of α- and β-synucleins in the brain of a GM2 gangliosidosis mouse model. Neuroreport 14, 551–554 (2003).

    CAS  PubMed  Google Scholar 

  70. Kakela, R., Somerharju, P. & Tyynela, J. Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. J. Neurochem. 84, 1051–1065 (2003).

    CAS  PubMed  Google Scholar 

  71. Bodennec, J., Pelled, D., Riebeling, C., Trajkovic, S. & Futerman, A. H. Phosphatidylcholine synthesis is elevated in neuronal models of Gaucher disease due to direct activation of CTP:phosphocholine cytidylyltransferase by glucosylceramide. FASEB J. 16, 1814–1816 (2002).

    CAS  PubMed  Google Scholar 

  72. Lloyd-Evans, E. et al. Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J. Biol. Chem. 278, 23594–23599 (2003).

    CAS  PubMed  Google Scholar 

  73. Pelled, D. et al. Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. J. Biol. Chem. 278, 29496–29501 (2003).

    CAS  PubMed  Google Scholar 

  74. LaPlante, J. M. et al. Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett. 532, 183–187 (2002).

    CAS  PubMed  Google Scholar 

  75. Berridge, M. J., Bootman, M. D. & Lipp, P. Calcium a life and death signal. Nature 395, 645–648 (1998).

    CAS  PubMed  Google Scholar 

  76. Wada, R., Tifft, C. J. & Proia, R. L. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc. Natl Acad. Sci. USA 97, 10954–10959 (2000). One of the first studies to delineate the biochemical and cellular sequence of events that lead from the accumulation of an undegraded substrate (in this case, GM2 ganglioside) to cellular, tissue and organ pathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Myerowitz, R. et al. Molecular pathophysiology in Tay–Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum. Mol. Genet. 11, 1343–1350 (2002).

    CAS  PubMed  Google Scholar 

  78. Jeyakumar, M. et al. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126, 974–987 (2003).

    CAS  PubMed  Google Scholar 

  79. Ohmi, K. et al. Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc. Natl Acad. Sci. USA 100, 1902–1907 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brooks, A. I., Chattopadhyay, S., Mitchison, H. M., Nussbaum, R. L. & Pearce, D. A. Functional categorization of gene expression changes in the cerebellum of a Cln3-knockout mouse model for Batten disease. Mol. Genet. Metab. 78, 17–30 (2003).

    CAS  PubMed  Google Scholar 

  81. Meikle, P. J. & Hopwood, J. J. Lysosomal storage disorders: emerging therapeutic options require early diagnosis. Eur. J. Pediatr. 162 (Suppl. 1), S34–S37 (2003).

    PubMed  Google Scholar 

  82. D'Azzo, A. Gene transfer strategies for correction of lysosomal storage disorders. Acta Haematol. 110, 71–85 (2003).

    CAS  PubMed  Google Scholar 

  83. Cheng, S. H. & Smith, A. E. Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther. 10, 1275–1281 (2003).

    CAS  PubMed  Google Scholar 

  84. Grabowski, G. A. & Hopkin, R. J. Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu. Rev. Genomics Hum. Genet. 4, 403–436 (2003).

    CAS  PubMed  Google Scholar 

  85. Zhu, Y., Li, X., Schuchman, E. H., Desnick, R. J. & Cheng, S. H. Dexamethasone-mediated upregulation of the mannose receptor improves the delivery of recombinant glucocerebrosidase to Gaucher macrophages. J. Pharmacol. Exp. Ther. 308, 705–711 (2004).

    CAS  PubMed  Google Scholar 

  86. Dhami, R. & Schuchman, E. H. Mannose-6-phosphate receptor-mediated uptake is defective in acid sphingomyelinase-deficient macrophages: implications for Niemann–Pick disease enzyme replacement therapy. J. Biol. Chem. 279, 1526–1532 (2003).

    PubMed  Google Scholar 

  87. Bengtsson, B. A., Johansson, J. O., Hollak, C., Linthorst, G. & FeldtRasmussen, U. Enzyme replacement in Anderson–Fabry disease. Lancet 361, 352 (2003).

    PubMed  Google Scholar 

  88. Germain, D. P. Fabry disease: recent advances in enzyme replacement therapy. Expert Opin. Investig. Drugs 11, 1467–1476 (2002).

    CAS  PubMed  Google Scholar 

  89. Desnick, R. J. & Schuchman, E. H. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nature Rev. Genet. 3, 954–966 (2002).

    CAS  PubMed  Google Scholar 

  90. Fan, J. Q. A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol. Sci. 24, 355–360 (2003).

    CAS  PubMed  Google Scholar 

  91. Futerman, A. H., Sussman, J. L., Horowitz, M., Silman, I. & Zimran, A. New directions in the treatment of Gaucher disease. Trends Pharmacol. Sci. 25, 147–151 (2004).

    CAS  PubMed  Google Scholar 

  92. Dvir, H. et al. X-ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep. 4, 704–709 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mark, B. L. et al. Crystal structure of human β-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay–Sachs disease. J. Mol. Biol. 327, 1093–1109 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Platt, F. M. et al. Prevention of lysosomal storage disease in Tay–Sachs mice treated with N-butyldeoxynojirimycin. Science 276, 428–431 (1997).

    CAS  PubMed  Google Scholar 

  95. Cox, T. et al. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355, 1481–1485 (2000). This paper provides a clinical description of Gaucher disease patients that had been treated using SRT — the first new treatment for Gaucher disease in over a decade.

    CAS  PubMed  Google Scholar 

  96. Lachmann, R. H. Miglustat. Oxford GlycoSciences/Actelion. Curr. Opin. Investig. Drugs 4, 472–479 (2003).

    CAS  PubMed  Google Scholar 

  97. Gahl, W. A., Thoene, J. G. & Schneider, J. A. Cystinosis. N. Engl. J. Med. 347, 111–121 (2002).

    PubMed  Google Scholar 

  98. Gravel, R. A. et al. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R. et al.) 3827–3876 (McGraw–Hill Inc., Columbus, USA, 2001).

    Google Scholar 

  99. Beutler, E. & Grabowski, G. A. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R. et al.) 3635–3668 (McGraw–Hill Inc., Columbus, USA, 2001).

    Google Scholar 

  100. Brady, R. O. in Gaucher's Disease. (ed. Zimran, A.) 621–634 (Bailliere Tindall, London, 1997).

    Google Scholar 

  101. Luzio, J. P. et al. Membrane dynamics and the biogenesis of lysosomes. Mol. Membr. Biol. 20, 141–154 (2003).

    CAS  PubMed  Google Scholar 

  102. Stahl, P. D. & Barbieri, M. A. Multivesicular bodies and multivesicular endosomes: the 'ins and outs' of endosomal traffic. Sci. STKE 141, PE32 (2002).

    Google Scholar 

  103. Hirsch, J. G., Fedorko, M. E. & Cohn, Z. A. Vesicle fusion and formation at the surface of pinocytic vacuoles in macrophages. J. Cell Biol. 38, 629–632 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418, 988–994 (2002).

    CAS  PubMed  Google Scholar 

  105. Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–131 (2002).

    CAS  Google Scholar 

  106. Murk, J. L. et al. Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc. Natl Acad. Sci. USA 100, 13332–13337 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sawkar, A. R. et al. Chemical chaperones increase the cellular activity of N370S β-glucosidase: a therapeutic strategy for Gaucher disease. Proc. Natl Acad. Sci. USA 99, 15428–15433 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Scriver, C. R. et al. (eds) The Metabolic and Molecular Bases of Inherited Disease (McGraw–Hill Inc., Columbus, USA, 2001).

    Google Scholar 

  109. Wraith, J. E. Lysosomal disorders. Semin. Neonatol. 7, 75–83 (2002).

    CAS  PubMed  Google Scholar 

  110. Meikle, P. J., Hopwood, J. J., Clague, A. E. & Carey, W. F. Prevalence of lysosomal storage disorders. J. Am. Med. Soc. 281, 249–254 (1999).

    CAS  Google Scholar 

  111. Altmann, S. W. et al. Niemann–Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204 (2004).

    CAS  PubMed  Google Scholar 

  112. Sleat, D. E. et al. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc. Natl Acad. Sci. USA 101, 5886–5891 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Nobel e-museum

Christian de Duve — Nobel lecture

Saccharomyces genome database

Btn1

Btn2

Yif1

Swiss-Prot

ABC1

ABC2

ABC9

acid sphingomyelinase

cathepsin A

cathepsin D

CLN1

CLN2

CLN3

CLN5

CLN6

CLN8

γ-COP

CTP:phosphocholine cytidylyltransferase

ERGIC53

FGE

PPT2

Glossary

MANNOSE-6-PHOSPHATE RECEPTORS

Receptors that are located at the trans-Golgi network and, at low levels, at the plasma membrane. They are responsible for targeting several soluble lysosomal hydrolases from the Golgi, through endosomes, to lysosomes.

SPHINGOMYELIN

A sphingolipid that contains a phosphorylcholine headgroup.

GLYCOSAMINOGLYCANS

Long, linear, charged polysaccharides that are composed of a repeating pair of sugars, of which one is an amino sugar.

SPHINGOLIPIDS

Membrane lipids containing a ceramide backbone. Ceramide consists of a long chain sphingoid base, to which a fatty acid is linked through the amino group at C2. A headgroup is linked to the hydroxyl at C1.

GANGLIOSIDE

A sialic-acid-containing glycosphingolipid that accumulates in the gangliosidoses.

ABC TRANSPORTERS

A family of membrane transport proteins that use the energy of ATP hydrolysis to transport various molecules across the membrane.

UNFOLDED PROTEIN RESPONSE

A cellular response that is triggered by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and that results in the transcriptional upregulation of ER chaperones and degradative enzymes.

LYSOSOMOTRPHIC AGENTS

Molecules that move to the lysosome: mostly weak bases that diffuse across the lysosomal membrane as uncharged molecules and are trapped inside in their protonated form due to the low pH.

EXOSOMES

50–80-nm membrane vesicles that are secreted into the extracellular milieu as a consequence of multivesicular-body fusion with the plasma membrane.

GLYCOSPHINGOLIPID

A sphingolipid with an oligosaccharide headgroup. The sugar that is linked to the ceramide lipid backbone is generally glucose, but is galactose in galactosylceramide and sulphatide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futerman, A., van Meer, G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5, 554–565 (2004). https://doi.org/10.1038/nrm1423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing