Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fluorescence nanoscopy in cell biology

Key Points

  • Fluorescence nanoscopy (also known as super-resolution microscopy) methods have expanded optical imaging to reach the nanometre resolution range, typically 20–50 nm and even down to the 1 nm level.

  • Diffraction-unlimited nanoscopy methods, which neutralize the resolution-limiting role of diffraction, separate fluorophores by transiently transferring them between (at least) two discernible states, typically an 'on' and an 'off' state of fluorescence.

  • The counting of molecules in nanoscale settings such as within organelles is a crucially important development, along with labelling strategies to reliably pinpoint the locations and spatial proximities of all the molecules investigated in an imaging experiment.

  • Dynamic nanoscopy and extensions of nanoscopy imaging to tissue and in vivo contexts are further frontiers.

  • Examples taken from mitochondrial biology and neurobiology illustrate the capabilities and discovery potential of nanoscale molecule-specific imaging with focused light.

Abstract

Fluorescence nanoscopy uniquely combines minimally invasive optical access to the internal nanoscale structure and dynamics of cells and tissues with molecular detection specificity. While the basic physical principles of 'super-resolution' imaging were discovered in the 1990s, with initial experimental demonstrations following in 2000, the broad application of super-resolution imaging to address cell-biological questions has only more recently emerged. Nanoscopy approaches have begun to facilitate discoveries in cell biology and to add new knowledge. One current direction for method improvement is the ambition to quantitatively account for each molecule under investigation and assess true molecular colocalization patterns via multi-colour analyses. In pursuing this goal, the labelling of individual molecules to enable their visualization has emerged as a central challenge. Extending nanoscale imaging into (sliced) tissue and whole-animal contexts is a further goal. In this Review we describe the successes to date and discuss current obstacles and possibilities for further development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissecting animal cells with fluorescence nanoscopy.
Figure 2: Examples of fluorescence nanoscopy in bacteria and yeast.
Figure 3: The state of the art in fluorescence nanoscopy: basic working principles and comparisons of 3D resolution.
Figure 4: Nanoscopy of neurons.
Figure 5: Nanoscopy of mitochondria.
Figure 6: Sizes of commonly used binding probes: a challenge for nanoscopy.
Figure 7: Super-resolution microscopy in vivo mouse and fruitfly nanoscopy.

Similar content being viewed by others

References

  1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv. Mikrosk. Anat. 9, 413–418 (1873).

    Article  Google Scholar 

  2. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994). First viable proposal to utilize elementary molecular state transitions to fundamentally break the diffraction barrier of lens-based fluorescence microscopy. The report describes the concepts and quantitatively outlines the potential of spatial resolution at the nanoscale.

    Article  CAS  PubMed  Google Scholar 

  3. Hell, S. W. & Kroug, M. Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995).

    Article  Google Scholar 

  4. Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Hell, S. W. Nanoscopy with focused light (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 54, 8054–8066 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000). First experimental report of fluorescence nanoscopy in a cellular context. Reports STED nanoscopy in a living cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donnert, G. et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl Acad. Sci. USA 103, 11440–11445 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006). First application of fluorescence nanoscopy to a biological research question, investigating clustering of the membrane protein synaptotagmin I under different stimulation conditions.

    Article  CAS  PubMed  Google Scholar 

  11. Göttfert, F. et al. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys. J. 105, L01–L03 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl Acad. Sci. USA 102, 17565–17569 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brakemann, T. et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat. Biotechnol. 29, 942–947 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011). Refs 13 and 14 provide the first experimental demonstrations of low-light-level RESOLFT nanoscopy in cells.

    Article  CAS  PubMed  Google Scholar 

  15. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006). Refs 15–17 provide the first demonstrations of the PALM/STORM concept.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bock, H. et al. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B 88, 161–165 (2007).

    Article  CAS  Google Scholar 

  20. Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fölling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997). First report of single-molecule-level switching of a fluorescent protein with light between active and inactive states.

    Article  CAS  PubMed  Google Scholar 

  26. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2016). Reports MINFLUX, a concept for nanometre-level molecule localization and nanoscopy with minimal fluxes of emitted (fluorescence) photons.

    Article  CAS  PubMed  Google Scholar 

  27. Danzl, J. G. et al. Coordinate-targeted fluorescence nanoscopy with multiple off states. Nat. Photonics 10, 122–128 (2016).

    Article  CAS  Google Scholar 

  28. Göttfert, F. et al. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc. Natl Acad. Sci. USA 114, 2125–2130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Minsky, M. Microscopy apparatus. US patent 3013467 A (1961).

  31. Sheppard, C. J. R. Super-resolution in confocal imaging. Optik 80, 53–54 (1988).

    Google Scholar 

  32. Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, B.-C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hookway, C. et al. Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Mol. Biol. Cell 26, 1675–1686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hagen, C. et al. Structural basis of vesicle formation at the inner nuclear membrane. Cell 163, 1692–1701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burnette, D. T. et al. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. J. Cell Biol. 205, 83–96 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sahl, S. J. et al. Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”. Science 352, 527 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Geissbuehler, S. et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun. 5, 5830 (2014).

    Article  PubMed  Google Scholar 

  42. Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harke, B., Ullal, C. K., Keller, J. & Hell, S. W. Three-dimensional nanoscopy of colloidal crystals. Nano Lett. 8, 1309–1313 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Hell, S. & Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992).

    Article  Google Scholar 

  45. Schmidt, R. et al. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5, 539–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt, R. et al. Mitochondrial cristae revealed with focused light. Nano Lett. 9, 2508–2510 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Curdt, F. et al. isoSTED nanoscopy with intrinsic beam alignment. Opt. Express 23, 30891–30903 (2015).

    Article  PubMed  Google Scholar 

  48. Böhm, U., Hell, S. W. & Schmidt, R. 4Pi-RESOLFT nanoscopy. Nat. Commun. 7, 10504 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aquino, D. et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat. Methods 8, 353–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Huang, F. et al. Ultra-high resolution 3D imaging of whole cells. Cell 166, 1028–1040 (2016). Comprehensive demonstration of 3D nanoscopy at 10–20 nm resolution across a wide range of cellular structures based on the 4Pi approach (Ref. 44) and its combination with PALM/STORM (Refs 49 and 50).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Juette, M. F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Pavani, S. R. P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, H.-l. D., Sahl, S. J., Lew, M. D. & Moerner, W. E. The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Appl. Phys. Lett. 100, 153701 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Backlund, M. P. et al. Simultaneous, accurate measurement of the 3D position and orientation of single molecules. Proc. Natl Acad. Sci. USA 109, 19087–19092 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gahlmann, A. et al. Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions. Nano Lett. 13, 987–993 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jia, S., Vaughan, J. C. & Zhuang, X. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat. Photonics 8, 302–306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shechtman, Y., Sahl, S. J., Backer, A. S. & Moerner, W. E. Optimal point spread function design for 3D imaging. Phys. Rev. Lett. 113, 133902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shechtman, Y., Weiss, L. E., Backer, A. S., Lee, M. Y. & Moerner, W. E. Multicolour localization microscopy by point-spread-function engineering. Nat. Photonics 10, 590–594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith, C., Huisman, M., Siemons, M., Grünwald, D. & Stallinga, S. Simultaneous measurement of emission color and 3D position of single molecules. Opt. Express 24, 4996–5013 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vaughan, J. C., Jia, S. & Zhuang, X. Ultrabright photoactivatable fluorophores created by reductive caging. Nat. Methods 9, 1181–1184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu, K., Babcock, H. P. & Zhuang, X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 9, 185–188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Staudt, T. et al. Far-field optical nanoscopy with reduced number of state transition cycles. Opt. Express 19, 5644–5657 (2011).

    Article  PubMed  Google Scholar 

  65. Zhu, L., Zhang, W., Elnatan, D. & Huang, B. Faster STORM using compressed sensing. Nat. Methods 9, 721–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schneider, J. et al. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat. Methods 12, 827–830 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Komis, G., Samajova, O., Ovecka, M. & Samaj, J. Super-resolution microscopy in plant cell imaging. Trends Plant Sci. 20, 834–843 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Williamson, D. J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–662 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Dudok, B. et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 18, 75–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Chojnacki, J. et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338, 524–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Van Engelenburg, S. B. et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343, 653–656 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bleck, M. et al. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. Proc. Natl Acad. Sci. USA 111, 12211–12216 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prescher, J. et al. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLOS Pathog. 11, e1004677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hanne, J. et al. Stimulated emission depletion nanoscopy reveals time-course of human immunodeficiency virus proteolytic maturation. ACS Nano 10, 8215–8222 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Gahlmann, A. & Moerner, W. E. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat. Rev. Microbiol. 12, 9–22 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, C. et al. Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope. ACS Appl. Mater. Interfaces 8, 25825–25833 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Ilgen, P. et al. STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue. PLoS ONE 9, e101563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Benda, A., Aitken, H., Davies, D. S., Whan, R. & Goldsbury, C. STED imaging of tau filaments in Alzheimer's disease cortical grey matter. J. Struct. Biol. 195, 345–352 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Löschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125, 570–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013). Refs 80 and 81: pioneering studies of NPC architecture by fluorescence nanoscopy employing image-averaging techniques.

    Article  CAS  PubMed  Google Scholar 

  82. Broeken, J. et al. Resolution improvement by 3D particle averaging in localization microscopy. Methods Appl. Fluoresc. 3, 014003 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, T. T. et al. Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci. Rep. 5, 14096 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Laine, R. F. et al. Structural analysis of herpes simplex virus by optical super-resolution imaging. Nat. Commun. 6, 5980 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013). Nanoscopy-enabled discovery of a periodic lattice of various cytoskeleton proteins in the axons of neuronal cells.

    Article  CAS  PubMed  Google Scholar 

  86. Zhong, G. et al. Developmental mechanism of the periodic membrane skeleton in axons. eLife 3, e04581 (2014).

    Article  PubMed Central  Google Scholar 

  87. D'Este, E., Kamin, D., Gottfert, F., El-Hady, A. & Hell, S. W. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10, 1246–1251 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Sidenstein, S. C. et al. Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci. Rep. 6, 26725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bär, J., Kobler, O., van Bommel, B. & Mikhaylova, M. Periodic F-actin structures shape the neck of dendritic spines. 6, 37136 (2016).

  90. Leterrier, C. et al. Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold. Cell Rep. 13, 2781–2793 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Leite, S. C. et al. The actin-binding protein α-adducin is required for maintaining axon diameter. Cell Rep. 15, 490–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lukinavicius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. D'Este, E. et al. Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. He, J. et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc. Natl Acad. Sci. USA 113, 6029–6034 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Albrecht, D. et al. Nanoscopic compartmentalization of membrane protein motion at the axon initial segment. J. Cell Biol. 215, 37–46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. D'Este, E., Kamin, D., Balzarotti, F. & Hell, S. W. Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. Proc. Natl Acad. Sci. USA 114, E191–E199 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Wilhelm, B. G. et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Chazeau, A. & Giannone, G. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell. Mol. Life Sci. 73, 3053–3073 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Ehmann, N., Sauer, M. & Kittel, R. J. Super-resolution microscopy of the synaptic active zone. Front. Cell. Neurosci. 9, 7 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kittel, R. J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006). Pioneering study of the molecular organization of presynaptic active zones using fluorescence nanoscopy.

    Article  CAS  PubMed  Google Scholar 

  101. Fouquet, W. et al. Maturation of active zone assembly by Drosophila Bruchpilot. J. Cell Biol. 186, 129–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Owald, D. et al. A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. J. Cell Biol. 188, 565–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, K. S. et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 334, 1565–1569 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Ehmann, N. et al. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat. Commun. 5, 4650 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Nishimune, H., Badawi, Y., Mori, S. & Shigemoto, K. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci. Rep. 6, 27935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chamma, I. et al. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat. Commun. 7, 10773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010). STORM analysis of a large number of chemical synapses from different brain regions, quantifying variations in synapse morphology and the distribution of synaptic proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hoze, N. et al. Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging. Proc. Natl Acad. Sci. USA 109, 17052–17057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. MacGillavry, H. D., Song, Y., Raghavachari, S. & Blanpied, T. A. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78, 615–622 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fukata, Y. et al. Local palmitoylation cycles define activity-regulated postsynaptic subdomains. J. Cell Biol. 202, 145–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nair, D. et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33, 13204–13224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tang, A.-H. et al. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536, 210–214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Izeddin, I. et al. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6, e15611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Urban, N. T., Willig, K. I., Hell, S. W. & Nagerl, U. V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chazeau, A. et al. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. EMBO J. 33, 2745–2764 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nägerl, U. V., Willig, K. I., Hein, B., Hell, S. W. & Bonhoeffer, T. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl Acad. Sci. USA 105, 18982–18987 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Takasaki, K. & Sabatini, B. L. Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties. Front. Neuroanat 8, 29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tonnesen, J., Katona, G., Rozsa, B. & Nägerl, U. V. Spine neck plasticity regulates compartmentalization of synapses. Nat. Neurosci. 17, 678–685 (2014). Reports on the link between nanoscale anatomy and compartmentalization in live spines of mouse brain slices by using time-lapse STED imaging in combination with FRAP measurements, glutamate uncaging, electrophysiology and simulations.

    Article  CAS  PubMed  Google Scholar 

  119. Duim, W. C., Jiang, Y., Shen, K., Frydman, J. & Moerner, W. E. Super-resolution fluorescence of huntingtin reveals growth of globular species into short fibers and coexistence of distinct aggregates. ACS Chem. Biol. 9, 2767–2778 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pinotsi, D. et al. Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett. 14, 339–345 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Kaminski Schierle, G. S. et al. In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging. J. Am. Chem. Soc. 133, 12902–12905 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Sahl, S. J., Weiss, L. E., Duim, W. C., Frydman, J. & Moerner, W. E. Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species. Sci. Rep. 2, 895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Roberti, M. J. et al. Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy. Biophys. J. 102, 1598–1607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sontag, E. M. et al. Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant Huntingtin cellular phenotypes. Proc. Natl Acad. Sci. USA 110, 3077–3082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sahl, S. J. et al. Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation. Q. Rev. Biophys. 49, e2 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Li, L. et al. Real-time imaging of Huntingtin aggregates diverting target search and gene transcription. eLife 5, e17056 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Donnert, G. et al. Two-color far-field fluorescence nanoscopy. Biophys. J. 92, L67–L69 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kehrein, K. et al. Organization of mitochondrial gene expression in two distinct ribosome-containing assemblies. Cell Rep. 10, 843–853 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Beinlich, F. R., Drees, C., Piehler, J. & Busch, K. B. Shuttling of PINK1 between mitochondrial microcompartments resolved by triple-color superresolution microscopy. ACS Chem. Biol. 10, 1970–1976 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Das, A., Nag, S., Mason, A. B. & Barroso, M. M. Endosome-mitochondria interactions are modulated by iron release from transferrin. J. Cell Biol. 214, 831–845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wurm, C. A., Neumann, D., Schmidt, R., Egner, A. & Jakobs, S. Sample Preparation for STED Microscopy. In Live Cell Imaging: Methods and Protocols, Vol. 591 (ed. Papkovsky, D. B.) 185–199 (2010).

    Chapter  Google Scholar 

  134. Wurm, C. A. et al. Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. Proc. Natl Acad. Sci. USA 108, 13546–13551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Palade, G. E. The fine structure of mitochondria. Anat. Rec. 114, 427–451 (1952).

    Article  CAS  PubMed  Google Scholar 

  136. Shim, S. H. et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl Acad. Sci. USA 109, 13978–13983 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jans, D. C. et al. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc. Natl Acad. Sci. USA 110, 8936–8941 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Perkins, G. A. et al. The micro-architecture of mitochondria at active zones: electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. J. Neurosci. 30, 1015–1026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stoldt, S. et al. The inner-mitochondrial distribution of Oxa1 depends on the growth conditions and on the availability of substrates. Mol. Biol. Cell 23, 2292–2301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sukhorukov, V. M. et al. Determination of protein mobility in mitochondrial membranes of living cells. Biochim. Biophys. Acta 1798, 2022–2032 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Dieteren, C. E. J. et al. Solute diffusion is hindered in the mitochondrial matrix. Proc. Natl Acad. Sci. USA 108, 8657–8662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Appelhans, T. et al. Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. Nano Lett. 12, 610–616 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Nechushtan, A., Smith, C. L., Lamensdorf, I., Yoon, S. H. & Youle, R. J. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell Biol. 153, 1265–1276 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Grosse, L. et al. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J. 35, 402–413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Salvador-Gallego, R. et al. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J. 35, 389–401 (2016). Refs 145 and 146 are two independent studies reporting on the assembly of Bax in the mitochondrial outer membrane to mediate membrane rupture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kuwana, T., Olson, N. H., Kiosses, W. B., Peters, B. & Newmeyer, D. D. Pro-apoptotic Bax molecules densely populate the edges of membrane pores. Sci. Rep. 6, 27299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kukat, C. et al. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc. Natl Acad. Sci. USA 108, 13534–13539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Brown, T. A. et al. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol. Cell. Biol. 31, 4994–5010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Iborra, F. J., Kimura, H. & Cook, P. R. The functional organization of mitochondrial genomes in human cells. BMC Biol. 2, 9 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Legros, F., Malka, F., Frachon, P., Lombes, A. & Rojo, M. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Kukat, C. et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl Acad. Sci. USA 112, 11288–11293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gustafsson, C. M., Falkenberg, M. & Larsson, N. G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 133–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Lau, L., Lee, Y. L., Sahl, S. J., Stearns, T. & Moerner, W. E. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys. J. 102, 2926–2935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pleiner, T. et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Mikhaylova, M. et al. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 6, 7933 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bradbury, A. & Plückthun, A. Reproducibility: standardize antibodies used in research. Nature 518, 27–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Butkevich, A. N. et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells. Angew. Chem. Int. Ed. Engl. 55, 3290–3294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bottanelli, F. et al. Two-colour live-cell nanoscale imaging of intracellular targets. Nat. Commun. 7, 10778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Winter, F. R. et al. Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection. Sci. Rep. 7, 46492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gibson, T. J., Seiler, M. & Veitia, R. A. The transience of transient overexpression. Nat. Methods 10, 715–721 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Ratz, M., Testa, I., Hell, S. W. & Jakobs, S. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci. Rep. 5, 9592 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nikic, I. & Lemke, E. A. Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond. Curr. Opin. Chem. Biol. 28, 164–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Uttamapinant, C. et al. Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J. Am. Chem. Soc. 137, 4602–4605 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee, S.-H., Shin, J. Y., Lee, A. & Bustamante, C. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl Acad. Sci. USA 109, 17436–17441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Finan, K., Raulf, A. & Heilemann, M. A set of homo-oligomeric standards allows accurate protein counting. Angew. Chem. Int. Ed. Engl. 54, 12049–12052 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Puchner, E. M., Walter, J. M., Kasper, R., Huang, B. & Lim, W. A. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc. Natl Acad. Sci. USA 110, 16015–16020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rollins, G. C., Shin, J. Y., Bustamante, C. & Pressé, S. Stochastic approach to the molecular counting problem in superresolution microscopy. Proc. Natl Acad. Sci. USA 112, E110–E118 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Hummer, G., Fricke, F. & Heilemann, M. Model-independent counting of molecules in single-molecule localization microscopy. Mol. Biol. Cell 27, 3637–3644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jungmann, R. et al. Quantitative super-resolution imaging with qPAINT. Nat. Methods 13, 439–442 (2016). Demonstrates qPAINT, a method for quantitative nanoscopy with low counting error.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ta, H. et al. Mapping molecules in scanning far-field fluorescence nanoscopy. Nat. Commun. 6, 7977 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U. & Radenovic, A. Identification of clustering artifacts in photoactivated localization microscopy. Nat. Methods 8, 527–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Truan, Z. et al. Quantitative morphological analysis of arrestin2 clustering upon G protein-coupled receptor stimulation by super-resolution microscopy. J. Struct. Biol. 184, 329–334 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969–975 (2011). Method to analyse complex patterns of protein distributions across the plasma membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Baumgart, F. et al. Varying label density allows artifact-free analysis of membrane-protein nanoclusters. Nat. Methods 13, 661–664 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20313 (2007). Early report on the application of two-colour PALM to study pairs of different proteins assembled in adhesion complexes, the central attachment points between the cytoskeleton and the substrate in migrating cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Xu, L. et al. Resolution, target density and labeling effects in colocalization studies — suppression of false positives by nanoscopy and modified algorithms. FEBS J. 283, 882–898 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Malkusch, S. et al. Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem. Cell Biol. 137, 1–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Pageon, S. V., Nicovich, P. R., Mollazade, M., Tabarin, T. & Gaus, K. Clus-DoC: a combined cluster detection and colocalization analysis for single-molecule localization microscopy data. Mol. Biol. Cell 27, 3627–3636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Sahl, S. J., Leutenegger, M., Hilbert, M., Hell, S. W. & Eggeling, C. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc. Natl Acad. Sci. USA 107, 6829–6834 (2010). Ref. 182 reports differential diffusion behaviours of phospholipids and sphingolipids in the plasma membranes of living cells, establishing STED-FCS as a powerful tool for live-cell dynamics studies at millisecond timescales, complementary to the fast single-molecule tracking demonstrated in Ref. 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mueller, V. et al. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Andrade, D. M. et al. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane — a minimally invasive investigation by STED-FCS. Sci. Rep. 5, 11454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Saka, S. K. et al. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat. Commun. 5, 4509 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Honigmann, A. et al. Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nat. Struct. Mol. Biol. 20, 679–686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Das, S. et al. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling. Proc. Natl Acad. Sci. USA 112, E267–E276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jones, S. A., Shim, S. H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8, 499–505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bingen, P., Reuss, M., Engelhardt, J. & Hell, S. W. Parallelized STED fluorescence nanoscopy. Opt. Express 19, 23716–23726 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Chmyrov, A. et al. Nanoscopy with more than 100,000 'doughnuts'. Nat. Methods 10, 737–740 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Yang, B., Przybilla, F., Mestre, M., Trebbia, J.-B. & Lounis, B. Large parallelization of STED nanoscopy using optical lattices. Opt. Express 22, 5581–5589 (2014).

    Article  PubMed  Google Scholar 

  194. Bergermann, F., Alber, L., Sahl, S. J., Engelhardt, J. & Hell, S. W. 2000-fold parallelized dual-color STED fluorescence nanoscopy. Opt. Express 23, 211–223 (2015).

    Article  PubMed  Google Scholar 

  195. Chmyrov, A. et al. Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy. Sci. Rep. 7, 44619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hoyer, P. et al. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT. Proc. Natl Acad. Sci. USA 113, 3442–3446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shao, L., Kner, P., Rego, E. H. & Gustafsson, M. G. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 8, 1044–1046 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. York, A. G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wäldchen, S., Lehmann, J., Klein, T., van de Linde, S. & Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 5, 15348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Patton, B. R. et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt. Express 24, 8862–8876 (2016).

    Article  PubMed  Google Scholar 

  201. Antonello, J., Kromann, E. B., Burke, D., Bewersdorf, J. & Booth, M. J. Coma aberrations in combined two- and three-dimensional STED nanoscopy. Opt. Lett. 41, 3631–3634 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Burke, D., Patton, B., Huang, F., Bewersdorf, J. & Booth, M. J. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica 2, 177–185 (2015).

    Article  CAS  Google Scholar 

  203. Willig, K. I. et al. Nanoscopy of filamentous actin in cortical dendrites of a living mouse. Biophys. J. 106, L01–L03 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mo, G. C. H. et al. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat. Methods 14, 427–434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Testa, I. et al. Nanoscopy of living brain slices with low light levels. Neuron 75, 992–1000 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Berning, S., Willig, K. I., Steffens, H., Dibaj, P. & Hell, S. W. Nanoscopy in a living mouse brain. Science 335, 551 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Schnorrenberg, S. et al. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster. eLife 5, e15567 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Beliveau, B. J. et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6, 7147 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016). Refs 208 and 209 are pioneering nanoscopy reports using STORM and Oligopaint fluorescence in situ hybridization probes on the spatial organization of DNA, including the classification of genomic domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Viero, G. et al. Three distinct ribosome assemblies modulated by translation are the building blocks of polysomes. J. Cell Biol. 208, 581–596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Galiani, S. et al. Super-resolution microscopy reveals compartmentalization of peroxisomal membrane proteins. J. Biol. Chem. 291, 16948–16962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010). Early 3D nanoscopy study of the complex nanoscale protein organization within focal adhesions, which are involved in force transmission, cytoskeletal regulation and signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Erdmann, R. S. et al. Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. Angew. Chem. Int. Ed. Engl. 53, 10242–10246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Hell, S. W. Microscopy and its focal switch. Nat. Methods 6, 24–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Olivier, N., Keller, D., Gonczy, P. & Manley, S. Resolution doubling in 3D-STORM imaging through improved buffers. PLoS ONE 8, e69004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lee, Y. L. et al. Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function. Mol. Biol. Cell 25, 2919–2933 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Wang, W., Li, G. W., Chen, C., Xie, X. S. & Zhuang, X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333, 1445–1449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ptacin, J. L. et al. A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol. 12, 791–798 (2010). Nanoscopy visualizes components of a dedicated chromosome segregation apparatus in bacterial cells, which features surprising similarities to eukaryotic spindles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Fu, G. et al. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLoS ONE 5, e12682 (2010).

    Article  CAS  PubMed  Google Scholar 

  220. Lee, M. K., Rai, P., Williams, J., Twieg, R. J. & Moerner, W. E. Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy. J. Am. Chem. Soc. 136, 14003–14006 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Raulf, A. et al. Click chemistry facilitates direct labelling and super-resolution imaging of nucleic acids and proteins. RSC Adv. 4, 30462–30466 (2014).

    Article  CAS  PubMed  Google Scholar 

  222. Laplante, C., Huang, F., Tebbs, I. R., Bewersdorf, J. & Pollard, T. D. Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast. Proc. Natl Acad. Sci. USA 113, E5876–E5885 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Brown, M. S., Grubb, J., Zhang, A., Rust, M. J. & Bishop, D. K. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break. PLoS Genet. 11, e1005653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kaplan, C. et al. Absolute arrangement of subunits in cytoskeletal septin filaments in cells measured by fluorescence microscopy. Nano Lett. 15, 3859–3864 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Wilkens, V., Kohl, W. & Busch, K. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J. Cell Sci. 126, 103–116 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.J. and S.W.H. acknowledge funding through the Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

Author information

Authors and Affiliations

Authors

Contributions

All three authors contributed equally to all four aspects of preparing the article (researching data for the article, substantial contributions to the discussion of the content, writing, and reviewing and editing of the manuscript before submission).

Corresponding authors

Correspondence to Steffen J. Sahl, Stefan W. Hell or Stefan Jakobs.

Ethics declarations

Competing interests

S.W.H. is a co-founder of Abberior Instruments GmbH and Abberior GmbH, companies commercializing super-resolution microscopy systems and fluorophores for super-resolution applications, respectively.

Supplementary information

Supplementary information S1 (box)

The diffraction limit of optical microscopy (schematic). (PDF 278 kb)

PowerPoint slides

Glossary

Numerical aperture

(NA). Measure of the opening angle under which light is collected by an objective lens. The NA (n· sinα, with n being the refractive index and α the semi-aperture angle) determines the tightest focusing possible and thus establishes the resolution of diffraction-limited microscopy.

Fluorophore states

States with defined properties. In the context of nanoscopy, useful pairs of states are pairs for which one of them gives a signal ('on'), whereas the other one does not ('off'), as this allows fluorophores to be distinguished even when they are located in closer proximity to each other than the diffraction limit.

Stimulated emission depletion

(STED). The stimulated emission process transfers the excited fluorophore to its ground state. The stimulating photon induces the generation of a stimulated identical photon, which is not detected. The STED light thus exits the specimen, providing a clean fluorophore off-switch. The near-infrared light used in STED is hardly absorbed by the cell.

Reversible saturable/switchable optical linear (fluorescence) transitions

(RESOLFT). The general conceptual framework for coordinate-targeted nanoscopy. The term is mostly used in reference to approaches using reversibly switchable fluorescent proteins (RSFPs, see below) or photochromic organic compounds.

Photo-activated localization microscopy/stochastic optical reconstruction microscopy

(PALM/STORM). Coordinate-stochastic nanoscopy concepts based on the switching and localization of single molecules. Conceptually similar techniques include fluorescent PALM (fPALM) and ground state depletion with individual molecule return (GSDIM).

Points accumulation for imaging in nanoscale topography

(PAINT). A coordinate-stochastic nanoscopy concept based on separating fluorophores by registering only the bound ones ('on'), with the diffusing fluorophores remaining undetected ('off').

Nanoscopy with minimal photon fluxes

(MINFLUX). A concept that allows precise localization of fluorophores with minimal fluxes of emitted photons. MINFLUX nanoscopy combines coordinate-targeted and coordinate-stochastic aspects.

Multiple off-state transitions for nanoscopy

(MOST). A concept that synergistically combines two or more state-transfer mechanisms to, for example, protect the fluorophore from pathways related to photobleaching and improve signal-to-background in coordinate-targeted nanoscopy.

MINFIELD

A method for increasing the signal (photobleaching reduction) in coordinate-targeted nanoscopy. Using scan fields below the diffraction limit around an intensity minimum (for example, at the centre of a doughnut shape) avoids subjecting the fluorophores to the excess intensities of switching light at the maxima of the off-switching pattern.

Optical sectioning

Used to obtain an image with sufficient contrast that is not compromised by fluorescence originating in other axial planes of the specimen. For example, a confocal pinhole can act to reject the out-of-plane background. Other sectioning strategies include selective excitation or photoactivation by multi-photon absorption or light sheets.

Deconvolution

An algorithm to reverse the effects of convolution in the image formation process. By removing the optical blur, a sharper image is computed based on the (ideally) exact knowledge of the blurring (formalized by the so-called point spread function (PSF)). Because knowledge of this PSF is in practice imperfect, and registered images are compromised by noise, artefacts can easily arise in the deconvolution process. Deconvolution is not equivalent to methods that actually improve the spatial resolution by a (on-off) state transition.

Structured illumination microscopy

(SIM). A diffraction-limited method that produces up to 2-fold improved resolution and requires the acquisition of several images of a specimen with shifted illumination patterns and computation of a reconstructed image. Further improvements in resolution can be realized if on-off transitions (as in reversible saturable/switchable optical linear (fluorescence) transitions) are incorporated.

AiryScan

A diffraction-limited method that combines conventional confocal laser scanning microscopy with fast widefield detection or other detector designs to achieve close to a doubling of resolution after mathematical processing. Also known as image scanning microscopy (ISM).

Lattice light-sheet microscopy

A diffraction-limited method that uses a structured light sheet to excite fluorescence in successive planes of a specimen, generating a time series of 3D images that can provide information about dynamic biological processes.

Super-resolution optical fluctuation imaging

(SOFI). A method that analyses on-off fluctuations of fluorescence signals (but not strictly at the single-molecule level as in photo-activated localization microscopy and stochastic optical reconstruction microscopy) by examining correlations in time to improve resolution typically 2- to 3-fold in comparison with epifluorescence.

4Pi

Optical arrangement for coherent excitation and/or collection of fluorescence emissions featuring two juxtaposed lenses of high numerical aperture to expand the solid angle as much as possible, which enables very high axial resolution in nanoscopy (<10 nm).

Single-particle averaging

Computational methods that infer a structure by sorting and averaging data from a large dataset of images showing the same object.

Epitopes

Parts of a protein that are detected by an antibody or other binding probe.

Bio-orthogonal labelling

Chemical labelling reactions that can occur inside living cells without interfering with endogenous biochemical processes.

Genetic code expansion

A process that enables the site-specific incorporation of an amino acid that is not among the 20 common proteinogenic amino acids into a protein.

Click chemistry

A term that encompasses several chemical reactions that facilitate the fast, specific and irreversible attachment of a probe such as a fluorophore to a specific biomolecule.

Labelling coverage

The fraction of epitopes decorated by a binding probe such as an antibody out of all epitopes potentially available for decoration by this binding probe.

Fluorescence fluctuation spectroscopy

A set of methods, in particular fluorescence correlation spectroscopy (FCS), which allow the determination of timescales of dynamic processes. By analysing the (self-) similarity (so-called correlations) of the signal from an observed spot over time, information on, for example, molecular diffusion can be obtained.

Dwell time

Duration for which a scanning nanoscope collects signal at a given position (pixel or voxel).

Reversibly switchable fluorescent proteins

(RSFPs). Fluorescent proteins that can be reversibly switched by light irradiation between long-lived non-fluorescent 'off' and fluorescent 'on' states. RSFPs can be efficiently transferred between the two states at even a low light dose. Because the established state difference remains in place for milliseconds to hours, in RSFP-based reversible saturable/switchable optical linear (fluorescence) transitions nanoscopy, much lower light intensities are needed to break the diffraction barrier than in stimulated emission depletion nanoscopy.

Adaptive optics

Optical strategies to compensate for the effects of aberration and ensure more optimal focusing by deliberately modifying the phase across the light wavefront, often in response to a measurement to characterize the presence of aberrations, which is used as feedback.

Refractive index

A dimensionless number expressing the factor by which light is slowed down when travelling through a material compared with in vacuum. The refractive index of the immersion medium of an objective lens co-determines its numerical aperture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahl, S., Hell, S. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18, 685–701 (2017). https://doi.org/10.1038/nrm.2017.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing