Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

A comprehensive compilation of SUMO proteomics

Key Points

  • Small ubiquitin-like modifier (SUMO)ylation is a ubiquitin-like post-translational modification that is technically challenging to study by mass spectrometry-based proteomics, owing to low modification stoichiometry and incompatibility with standard mass spectrometry approaches.

  • Over the past decade, several methods were developed to allow the identification of sumoylated proteins. Recently, novel methods were established that enable the identification of site-specific sumoylation, leading to the identification of thousands of modified Lys residues.

  • We have compiled and evaluated data of sumoylated proteins and sites from 22 proteomic studies and generated the most comprehensive sumoylation database to date.

  • The most abundantly sumoylated proteins are some of the most functionally interconnected proteins, indicating that sumoylation preferentially targets specific pathways and protein complexes and acts as a group modifier.

  • The regulation of the SUMO signal is more complex than previously appreciated, owing to the post-translational modification of SUMO family members by phosphorylation, acetylation and ubiquitylation.

  • With the availability of increasingly potent proteomic methods and equipment, our understanding of sumoylation and its functions can now be developed to match that of ubiquitylation, acetylation and phosphorylation.

Abstract

Small ubiquitin-like modifiers (SUMOs) are essential for the regulation of several cellular processes and are potential therapeutic targets owing to their involvement in diseases such as cancer and Alzheimer disease. In the past decade, we have witnessed a rapid expansion of proteomic approaches for identifying sumoylated proteins, with recent advances in detecting site-specific sumoylation. In this Analysis, we combined all human SUMO proteomics data currently available into one cohesive database. We provide proteomic evidence for sumoylation of 3,617 proteins at 7,327 sumoylation sites, and insight into SUMO group modification by clustering the sumoylated proteins into functional networks. The data support sumoylation being a frequent protein modification (on par with other major protein modifications) with multiple nuclear functions, including in transcription, mRNA processing, DNA replication and the DNA-damage response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sumoylation system.
Figure 2: The dynamic SUMO proteome.
Figure 3: Sumoylated proteins are functionally interconnected.
Figure 4: SUMO functionality.
Figure 5: Modification of SUMO family members by other post-translational modifications produces complex signalling codes.

Similar content being viewed by others

References

  1. Golebiowski, F. et al. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2, ra24 (2009).

    PubMed  Google Scholar 

  2. Hendriks, I. A. et al. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 21, 927–936 (2014). The first site-specific proteomics paper reporting more than 1,000 sumoylation sites in standard growth conditions, and more than 4,000 sumoylation sites in total.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schimmel, J. et al. Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol. Cell 53, 1053–1066 (2014).

    CAS  PubMed  Google Scholar 

  4. Miura, K., Jin, J. B. & Hasegawa, P. M. Sumoylation, a post-translational regulatory process in plants. Curr. Opin. Plant Biol. 10, 495–502 (2007).

    CAS  PubMed  Google Scholar 

  5. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).

    CAS  PubMed  Google Scholar 

  6. Flotho, A. & Melchior, F. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82, 357–385 (2013).

    CAS  PubMed  Google Scholar 

  7. Ulrich, H. D. & Walden, H. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 11, 479–489 (2010).

    CAS  PubMed  Google Scholar 

  8. Hickey, C. M., Wilson, N. R. & Hochstrasser, M. Function and regulation of SUMO proteases. Nat. Rev. Mol. Cell Biol. 13, 755–766 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jackson, S. P. & Durocher, D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 49, 795–807 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Eifler, K. & Vertegaal, A. C. Mapping the SUMOylated landscape. FEBS J. 282, 3669–3680 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eifler, K. & Vertegaal, A. C. SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem. Sci. 40, 779–793 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kessler, J. D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348–353 (2012). The involvement of SUMO in diseases such as cancer is exemplified by the ability of SUMO to orchestrate Myc-driven tumorigenesis.

    CAS  PubMed  Google Scholar 

  13. Lee, Y. J. & Hallenbeck, J. M. SUMO and ischemic tolerance. Neuromolecular Med. 15, 771–781 (2013).

    CAS  PubMed  Google Scholar 

  14. Wang, Y. & Dasso, M. SUMOylation and deSUMOylation at a glance. J. Cell Sci. 122, 4249–4252 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo, D. et al. Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochem. Biophys. Res. Commun. 337, 1308–1318 (2005).

    CAS  PubMed  Google Scholar 

  16. Becker, J. et al. Detecting endogenous SUMO targets in mammalian cells and tissues. Nat. Struct. Mol. Biol. 20, 525–531 (2013). The first proteomics screen to identify hundreds of endogenous SUMO target proteins using immunoprecipitation.

    CAS  PubMed  Google Scholar 

  17. Matic, I. et al. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteomics 7, 132–144 (2008).

    CAS  PubMed  Google Scholar 

  18. Tatham, M. H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    CAS  PubMed  Google Scholar 

  19. Seeler, J. S. & Dejean, A. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690–699 (2003).

    CAS  PubMed  Google Scholar 

  20. Kamitani, T., Nguyen, H. P. & Yeh, E. T. Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J. Biol. Chem. 272, 14001–14004 (1997).

    CAS  PubMed  Google Scholar 

  21. Shiio, Y. & Eisenman, R. N. Histone sumoylation is associated with transcriptional repression. Proc. Natl Acad. Sci. USA 100, 13225–13230 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stielow, B. et al. Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Mol. Cell 29, 742–754 (2008).

    CAS  PubMed  Google Scholar 

  23. Uchimura, Y. et al. Involvement of SUMO modification in. J. Biol. Chem. 281, 23180–23190 (2006).

    CAS  PubMed  Google Scholar 

  24. Ishov, A. M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol. 147, 221–234 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhong, S. et al. Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748–2752 (2000).

    CAS  PubMed  Google Scholar 

  26. Muller, S. & Dejean, A. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J. Virol. 73, 5137–5143 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M. & Pandolfi, P. P. The mechanisms of PML-nuclear body formation. Mol. Cell 24, 331–339 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bernardi, R. & Pandolfi, P. P. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 22, 9048–9057 (2003).

    CAS  PubMed  Google Scholar 

  29. Dellaire, G. & Bazett-Jones, D. P. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26, 963–977 (2004).

    CAS  PubMed  Google Scholar 

  30. Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461–467 (2009).

    CAS  PubMed  Google Scholar 

  31. Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456–1464 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    CAS  PubMed  Google Scholar 

  33. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    CAS  PubMed  Google Scholar 

  34. Morris, J. R. et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462, 886–890 (2009).

    CAS  PubMed  Google Scholar 

  35. Galanty, Y. et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462, 935–939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yin, Y. et al. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Dev. 26, 1196–1208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Galanty, Y., Belotserkovskaya, R., Coates, J. & Jackson, S. P. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 26, 1179–1195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vyas, R. et al. RNF4 is required for DNA double-strand break repair in vivo. Cell Death Differ. 20, 490–502 (2013).

    CAS  PubMed  Google Scholar 

  39. Ouyang, K. J. et al. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol. 7, e1000252 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Pichler, A. et al. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat. Struct. Mol. Biol. 12, 264–269 (2005).

    CAS  PubMed  Google Scholar 

  41. Steinacher, R. & Schar, P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol. 15, 616–623 (2005).

    CAS  PubMed  Google Scholar 

  42. Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127 (2006).

    CAS  PubMed  Google Scholar 

  43. Sun, H. & Hunter, T. Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. J. Biol. Chem. 287, 42071–42083 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl Acad. Sci. USA 101, 14373–14378 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Keusekotten, K. et al. Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO. Biochem. J. 457, 207–214 (2014).

    CAS  PubMed  Google Scholar 

  46. Merrill, J. C. et al. A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity. PLoS ONE 5, e8794 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Prudden, J. et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26, 4089–4101 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Perry, J. J., Tainer, J. A. & Boddy, M. N. A. SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 33, 201–208 (2008).

    CAS  PubMed  Google Scholar 

  49. Wang, Z. & Prelich, G. Quality control of a transcriptional regulator by SUMO-targeted degradation. Mol. Cell. Biol. 29, 1694–1706 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Nagai, S., Davoodi, N. & Gasser, S. M. Nuclear organization in genome stability: SUMO connections. Cell Res. 21, 474–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun, H., Leverson, J. D. & Hunter, T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26, 4102–4112 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tatham, M. H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10, 538–546 (2008).

    CAS  PubMed  Google Scholar 

  53. Weisshaar, S. R. et al. Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett. 582, 3174–3178 (2008).

    CAS  PubMed  Google Scholar 

  54. Geoffroy, M. C., Jaffray, E. G., Walker, K. J. & Hay, R. T. Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol. Biol. Cell 21, 4227–4239 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lallemand-Breitenbach, V. et al. Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10, 547–555 (2008).

    CAS  PubMed  Google Scholar 

  56. Kosoy, A., Calonge, T. M., Outwin, E. A. & O'Connell, M. J. Fission yeast Rnf4 homologs are required for DNA repair. J. Biol. Chem. 282, 20388–20394 (2007).

    CAS  PubMed  Google Scholar 

  57. Guzzo, C. M. et al. RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci. Signal. 5, ra88 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Silver, H. R., Nissley, J. A., Reed, S. H., Hou, Y. M. & Johnson, E. S. A role for SUMO in nucleotide excision repair. DNA Repair (Amst.) 10, 1243–1251 (2011).

    CAS  Google Scholar 

  59. Psakhye, I. & Jentsch, S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151, 807–820 (2012). An excellent example of SUMO group modification during the DDR in yeast.

    CAS  PubMed  Google Scholar 

  60. Raman, N., Nayak, A. & Muller, S. The SUMO system: a master organizer of nuclear protein assemblies. Chromosoma 122, 475–485 (2013).

    CAS  PubMed  Google Scholar 

  61. Sahin, U. et al. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J. Cell Biol. 204, 931–945 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gonzalez-Prieto, R., Cuijpers, S. A., Luijsterburg, M. S., van Attikum, H. & Vertegaal, A. C. SUMOylation and PARylation cooperate to recruit and stabilize SLX4 at DNA damage sites. EMBO Rep. 16, 512–519 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    CAS  PubMed  Google Scholar 

  64. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).

    CAS  PubMed  Google Scholar 

  65. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    CAS  PubMed  Google Scholar 

  66. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    CAS  PubMed  Google Scholar 

  67. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  68. Olsen, J. V. & Mann, M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteomics 12, 3444–3452 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Choudhary, C. & Mann, M. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11, 427–439 (2010).

    CAS  PubMed  Google Scholar 

  70. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    CAS  PubMed  Google Scholar 

  71. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    CAS  PubMed  Google Scholar 

  73. Guo, A. et al. Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol. Cell. Proteomics 13, 372–387 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Emanuele, M. J. et al. Global identification of modular cullin-RING ligase substrates. Cell 147, 459–474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteomics 10, M111.013284 (2011).

    PubMed  PubMed Central  Google Scholar 

  76. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tammsalu, T. et al. Proteome-wide identification of SUMO2 modification sites. Sci. Signal. 7, rs2 (2014). The first site-specific SUMO proteomics study to report more than 1,000 sumoylation sites.

    PubMed  PubMed Central  Google Scholar 

  78. Xiao, Z. et al. System-wide analysis of SUMOylation dynamics in response to replication stress reveals novel SUMO target proteins and acceptor lysines relevant for genome stability. Mol. Cell. Proteomics 14, 1419–1434 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hendriks, I. A., Treffers, L. W., Verlaan-de Vries, M., Olsen, J. V. & Vertegaal, A. C. SUMO-2 orchestrates chromatin modifiers in response to DNA damage. Cell Rep. 10, 1778–1791 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Impens, F., Radoshevich, L., Cossart, P. & Ribet, D. Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc. Natl Acad. Sci. USA 111, 12432–12437 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lamoliatte, F. et al. Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nat. Commun. 5, 5409 (2014).

    CAS  PubMed  Google Scholar 

  82. Hendriks, I. A., D'Souza, R. C., Chang, J. G., Mann, M. & Vertegaal, A. C. System-wide identification of wild-type SUMO-2 conjugation sites. Nat. Commun. 6, 7289 (2015). Describes the development of PRISM, the first proteomic method to be able to identify hundreds of sumoylation sites without relying on the use of mutant SUMO.

    PubMed  Google Scholar 

  83. Mahajan, R., Gerace, L. & Melchior, F. Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol. 140, 259–270 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Eisenhardt, N. et al. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nat. Struct. Mol. Biol. 22, 959–967 (2015). Identifies ZNF451, a newly discovered enzyme with SUMO E3 ligase activity that is able to elongate SUMO chains and mediate sumoylation dynamics in response to cellular stress.

    CAS  PubMed  Google Scholar 

  85. Cappadocia, L., Pichler, A. & Lima, C. D. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat. Struct. Mol. Biol. 22, 968–975 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schimmel, J. et al. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol. Cell. Proteomics 7, 2107–2122 (2008).

    CAS  PubMed  Google Scholar 

  87. Pinto, M. P. et al. Heat shock induces a massive but differential inactivation of SUMO-specific proteases. Biochim. Biophys. Acta 1823, 1958–1966 (2012).

    CAS  PubMed  Google Scholar 

  88. Guo, L. et al. A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol. Cell 55, 15–30 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bursomanno, S. et al. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair (Amst.) 25, 84–96 (2015).

    CAS  Google Scholar 

  90. Seifert, A., Schofield, P., Barton, G. J. & Hay, R. T. Proteotoxic stress reprograms the chromatin landscape of SUMO modification. Sci. Signal. 8, rs7 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Li, T. et al. Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl Acad. Sci. USA 101, 8551–8556 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vassileva, M. T. & Matunis, M. J. SUMO modification of heterogeneous nuclear ribonucleoproteins. Mol. Cell. Biol. 24, 3623–3632 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pelisch, F., Pozzi, B., Risso, G., Munoz, M. J. & Srebrow, A. DNA damage-induced heterogeneous nuclear ribonucleoprotein K sumoylation regulates p53 transcriptional activation. J. Biol. Chem. 287, 30789–30799 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, S. W. et al. SUMOylation of hnRNP-K is required for p53-mediated cell-cycle arrest in response to DNA damage. EMBO J. 31, 4441–4452 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Panse, V. G. et al. Formation and nuclear export of preribosomes are functionally linked to the small-ubiquitin-related modifier pathway. Traffic. 7, 1311–1321 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Finkbeiner, E., Haindl, M. & Muller, S. The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO J. 30, 1067–1078 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Westman, B. J. et al. A proteomic screen for nucleolar SUMO targets shows SUMOylation modulates the function of Nop5/Nop58. Mol. Cell 39, 618–631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zemp, I. & Kutay, U. Nuclear export and cytoplasmic maturation of ribosomal subunits. FEBS Lett. 581, 2783–2793 (2007).

    CAS  PubMed  Google Scholar 

  99. Hang, J. & Dasso, M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. J. Biol. Chem. 277, 19961–19966 (2002).

    CAS  PubMed  Google Scholar 

  100. Lewis, A., Felberbaum, R. & Hochstrasser, M. A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance. J. Cell Biol. 178, 813–827 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. David, G., Neptune, M. A. & DePinho, R. A. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J. Biol. Chem. 277, 23658–23663 (2002).

    CAS  PubMed  Google Scholar 

  102. Yang, S. H. & Sharrocks, A. D. SUMO promotes HDAC-mediated transcriptional repression. Mol. Cell 13, 611–617 (2004).

    CAS  PubMed  Google Scholar 

  103. Kirsh, O. et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 21, 2682–2691 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bueno, M. T. & Richard, S. SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase. Epigenetics 8, 1162–1175 (2013).

    CAS  PubMed  Google Scholar 

  105. Sriramachandran, A. M. & Dohmen, R. J. SUMO-targeted ubiquitin ligases. Biochim. Biophys. Acta 1843, 75–85 (2014).

    CAS  PubMed  Google Scholar 

  106. Ryu, H., Gygi, S. P., Azuma, Y., Arnaoutov, A. & Dasso, M. SUMOylation of Psmd1 controls Adrm1 interaction with the proteasome. Cell Rep. 7, 1842–1848 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nacerddine, K. et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769–779 (2005).

    CAS  PubMed  Google Scholar 

  108. Myatt, S. S. et al. SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene 33, 4316–4329 (2013).

    PubMed  PubMed Central  Google Scholar 

  109. Zhang, X. D. et al. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol. Cell 29, 729–741 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, Q. E. et al. DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res. 33, 4023–4034 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Luo, K., Zhang, H., Wang, L., Yuan, J. & Lou, Z. Sumoylation of MDC1 is important for proper DNA damage response. EMBO J. 31, 3008–3019 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gonzalez-Prieto, R., Cuijpers, S. A., Kumar, R., Hendriks, I. A. & Vertegaal, A. C. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle 14, 1859–1872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sabo, A., Doni, M. & Amati, B. SUMOylation of Myc-family proteins. PLoS ONE 9, e91072 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. Schou, J., Kelstrup, C. D., Hayward, D. G., Olsen, J. V. & Nilsson, J. Comprehensive identification of SUMO2/3 targets and their dynamics during mitosis. PLoS ONE 9, e100692 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Cubenas-Potts, C. et al. Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes. Proteomics 15, 763–772 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bursomanno, S., McGouran, J. F., Kessler, B. M., Hickson, I. D. & Liu, Y. Regulation of SUMO2 target proteins by the proteasome in human cells exposed to replication stress. J. Proteome Res. 14, 1687–1699 (2015).

    CAS  PubMed  Google Scholar 

  117. Rodriguez, M. S., Dargemont, C. & Hay, R. T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659 (2001).

    CAS  PubMed  Google Scholar 

  118. Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. & Lima, C. D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356 (2002).

    CAS  PubMed  Google Scholar 

  119. Matic, I. et al. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol. Cell 39, 641–652 (2010).

    CAS  PubMed  Google Scholar 

  120. Yang, S. H., Galanis, A., Witty, J. & Sharrocks, A. D. An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J. 25, 5083–5093 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl Acad. Sci. USA 103, 45–50 (2006).

    CAS  PubMed  Google Scholar 

  122. Kubota, Y., O'Grady, P., Saito, H. & Takekawa, M. Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat. Cell Biol. 13, 282–291 (2011).

    CAS  PubMed  Google Scholar 

  123. Girdwood, D. et al. P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043–1054 (2003).

    CAS  PubMed  Google Scholar 

  124. Ullmann, R., Chien, C. D., Avantaggiati, M. L. & Muller, S. An acetylation switch regulates SUMO-dependent protein interaction networks. Mol. Cell 46, 759–770 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wagner, S. A. et al. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol. Cell. Proteomics 11, 1578–1585 (2012).

    PubMed  PubMed Central  Google Scholar 

  126. Danielsen, J. M. et al. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol. Cell. Proteomics 10, M110.003590 (2011).

    PubMed  Google Scholar 

  127. Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).

    PubMed  Google Scholar 

  128. Choudhary, C. et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol. Cell 36, 326–339 (2009).

    CAS  PubMed  Google Scholar 

  129. Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Herhaus, L. & Dikic, I. Expanding the ubiquitin code through post-translational modification. EMBO Rep. 16, 1071–1083 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ordureau, A. et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl Acad. Sci. USA 112, 6637–6642 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Vertegaal, A. C. SUMO chains: polymeric signals. Biochem. Soc. Trans. 38, 46–49 (2010).

    CAS  PubMed  Google Scholar 

  134. Desterro, J. M., Rodriguez, M. S., Kemp, G. D. & Hay, R. T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10618–10624 (1999).

    CAS  PubMed  Google Scholar 

  135. Azuma, Y. et al. Expression and regulation of the mammalian SUMO-1 E1 enzyme. FASEB J. 15, 1825–1827 (2001).

    CAS  PubMed  Google Scholar 

  136. Hay, R. T. SUMO: a history of modification. Mol. Cell 18, 1–12 (2005).

    CAS  PubMed  Google Scholar 

  137. Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    CAS  PubMed  Google Scholar 

  138. Reverter, D. & Lima, C. D. Insights into E3 ligase activity revealed by a SUMO-–RanGAP1–Ubc9–Nup358 complex. Nature 435, 687–692 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Sampson, D. A., Wang, M. & Matunis, M. J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21 664–21669 (2001).

    CAS  Google Scholar 

  140. Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

    CAS  PubMed  Google Scholar 

  141. Mukhopadhyay, D. & Dasso, M. Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286–295 (2007).

    CAS  PubMed  Google Scholar 

  142. Di, B. A. et al. The SUMO-specific protease SENP5 is required for cell division. Mol. Cell. Biol. 26, 4489–4498 (2006).

    Google Scholar 

  143. Cheng, J., Kang, X., Zhang, S. & Yeh, E. T. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell 131, 584–595 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Vertegaal, A. C. et al. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell. Proteomics 5, 2298–2310 (2006).

    CAS  PubMed  Google Scholar 

  145. Matafora, V., D'Amato, A., Mori, S., Blasi, F. & Bachi, A. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol. Cell. Proteomics 8, 2243–2255 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bruderer, R. et al. Purification and identification of endogenous polySUMO conjugates. EMBO Rep. 12, 142–148 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Tatham, M. H., Matic, I., Mann, M. & Hay, R. T. Comparative proteomic analysis identifies a role for SUMO in protein quality control. Sci. Signal. 4, rs4 (2011).

    CAS  PubMed  Google Scholar 

  148. Sohn, S. Y., Bridges, R. G. & Hearing, P. Proteomic analysis of ubiquitin-like posttranslational modifications induced by the adenovirus E4-ORF3 protein. J. Virol. 89, 1744–1755 (2015).

    PubMed  Google Scholar 

  149. Tu, J. et al. Functional proteomics study reveals SUMOylation of TFII-I is involved in liver cancer cell proliferation. J. Proteome Res. 14, 2385–2397 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to researchers whose work could not be cited owing to space constraints. The authors are grateful for support from the Netherlands Organization for Scientific Research (NWO) and the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred C. O. Vertegaal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Methods for SUMO proteomics (PDF 791 kb)

Supplementary information S2 (table)

A list of all proteins identified to be SUMO target proteins by any of 22 published proteomic studies or low-throughput studies. (XLSX 988 kb)

Supplementary information S3 (table)

A list of all lysines identified to be SUMOylated by any of 11 published proteomic studies or low-throughput studies. (XLSX 2027 kb)

Supplementary information S4 (box)

Methods used for the analysis of SUMO proteomics data (PDF 424 kb)

Supplementary information S5 (table)

A list of all SUMO target proteins identified by SUMOylated lysine, by at least one of 11 published proteomic studies. (XLSX 478 kb)

Supplementary information S6 (box)

Comparison of published and reprocessed sites (PDF 191 kb)

Supplementary information S7 (box)

Technical comparison of SUMO site purification methods (PDF 212 kb)

Supplementary information S8 (box)

Comparison of individual studies (PDF 503 kb)

Supplementary information S9 (box)

Secondary PCA analysis (PDF 917 kb)

Supplementary information S10 (box)

Global effects of stress on the SUMOylated proteome (PDF 269 kb)

Supplementary information S11 (table)

A list of terms, based on Gene Ontology and general keywords, applicable to SUMO target proteins that are globally upregulated or downregulated in SUMOylation in response to proteotoxic stress, as profiled over multiple proteomic studies. (XLSX 32 kb)

Supplementary information S12 (figure)

SUMOylated proteins are functionally interconnected. (PDF 656 kb)

Supplementary information S13 (table)

A list of enriched or depleted terms, based on Gene Ontology, Corum, KEGG, Pfam and general keywords, globally applicable to all SUMO target proteins identified by at least three proteomic studies. (XLSX 245 kb)

Supplementary information S14 (figure)

An unbiased SUMO consensus motif. (PDF 358 kb)

PowerPoint slides

Glossary

SUMO group modification

Simultaneous alteration of a cluster of functionally related proteins by a small ubiquitin-like modifier (SUMO). The cluster contains proteins with SUMO-conjugation sites and SUMO-interaction motifs, which mediate protein–protein interactions.

KXE-type motifs

Small ubiquitin-like modifier (SUMO)ylation consensus motifs consisting of a SUMO-conjugated Lys residue and a Glu residue separated by one amino acid.

E4 elongase

A small ubiquitin-like modifier (SUMO) ligase that extends SUMO polymers.

Principal component analysis

(PCA). An analysis tool used to determine how related or distinct complex data sets are from each other.

Methyl methanesulfonate

An alkylating agent that adds methyl groups to the DNA, thereby causing DNA damage.

Hydroxyurea

A compound that causes DNA replication-dependent damage by inhibiting ribonucleotide reductase, thereby decreasing the production of deoxyribonucleotides.

[IVL]KXE motif

A small ubiquitin-like modifier (SUMO)ylation consensus motif consisting of an inwardly oriented hydrophobic residue, a SUMO-conjugated Lys residue and a Glu residue. This motif is a strong indication for sumoylation and is modified at a relatively high stoichiometry.

Inverted sumoylation consensus motif

(ISCM). A small ubiquitin-like modifier (SUMO)ylation motif in which the acidic residue precedes the sumoylated Lys.

Tryptic remnant

A piece of a protein modification that remains attached to a target protein after digestion of the protein sample by the endoprotease trypsin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendriks, I., Vertegaal, A. A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol 17, 581–595 (2016). https://doi.org/10.1038/nrm.2016.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.81

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research