Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Internetwork competition for monomers governs actin cytoskeleton organization

Abstract

Cells precisely control the formation of dynamic actin cytoskeleton networks to coordinate fundamental processes, including motility, division, endocytosis and polarization. To support these functions, actin filament networks must be assembled, maintained and disassembled at the correct time and place, and with proper filament organization and dynamics. Regulation of the extent of filament network assembly and of filament network organization has been largely attributed to the coordinated activation of actin assembly factors through signalling cascades. Here, we discuss an intriguing model in which actin monomer availability is limiting and competition between homeostatic actin cytoskeletal networks for actin monomers is an additional crucial regulatory mechanism that influences the density and size of different actin networks, thereby contributing to the organization of the cellular actin cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functionally diverse F-actin networks in mammalian and fission yeast cells.
Figure 2: Classic model of F-actin network regulation.
Figure 3: Disassembly of F-actin networks releases G-actin that accumulates in remaining networks.
Figure 4: Updated model of F-actin homeostasis including internetwork competitive crosstalk.

Similar content being viewed by others

References

  1. Kovar, D. R., Sirotkin, V. & Lord, M. Three's company: the fission yeast actin cytoskeleton. Trends Cell Biol. 21, 177–187 (2011).

    CAS  PubMed  Google Scholar 

  2. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Sirotkin, V., Berro, J., Macmillan, K., Zhao, L. & Pollard, T. D. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol. Biol. Cell 21, 2894–2904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, J.-Q. & Pollard, T. D. Counting cytokinesis proteins globally and locally in fission yeast. Science 310, 310–314 (2005).

    CAS  PubMed  Google Scholar 

  5. Watanabe, S. et al. mDia2 induces the actin scaffold for the contractile ring and stabilizes its position during cytokinesis in NIH 3T3 cells. Mol. Biol. Cell 19, 2328–2338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dang, I. et al. Inhibitory signalling to the Arp2/3 complex steers cell migration. Nature 503, 281–284 (2013).

    CAS  PubMed  Google Scholar 

  7. Wu, C. et al. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148, 973–987 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    CAS  PubMed  Google Scholar 

  9. Steffen, A. et al. Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. Mol. Biol. Cell 17, 2581–2591 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicholson-Dykstra, S. M. & Higgs, H. N. Arp2 depletion inhibits sheet-like protrusions but not linear protrusions of fibroblasts and lymphocytes. Cell Motil. Cytoskeleton 65, 904–922 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Suraneni, P. et al. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 197, 239–251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rotty, J. D. et al. Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Dev. Cell 32, 54–67 (2015).

    CAS  PubMed  Google Scholar 

  13. Gao, L. & Bretscher, A. Analysis of unregulated formin activity reveals how yeast can balance F-actin assembly between different microfilament-based organizations. Mol. Biol. Cell 19, 1474–1484 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sagot, I., Klee, S. K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4, 42–50 (2002).

    CAS  PubMed  Google Scholar 

  15. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    CAS  PubMed  Google Scholar 

  16. Blanchoin, L. & Pollard, T. D. Hydrolysis of ATP by polymerized actin depends on the bound divalent cation but not profilin. Biochemistry 41, 597–602 (2002).

    CAS  PubMed  Google Scholar 

  17. Martin, S. G., Rincón, S. A., Basu, R., Pérez, P. & Chang, F. Regulation of the formin For3p by Cdc42p and Bud6p. Mol. Biol. Cell 18, 4155–4167 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin, S. G., McDonald, W. H., Yates, J. R. 3rd & Chang, F. Tea4p links microtubule plus ends with the formin For3p in the establishment of cell polarity. Dev. Cell 8, 479–491 (2005).

    CAS  PubMed  Google Scholar 

  19. Piekny, A., Werner, M. & Glotzer, M. Cytokinesis: Welcome to the Rho zone. Trends Cell Biol. 15, 651–658 (2005).

    CAS  PubMed  Google Scholar 

  20. Rincón, S. A. et al. Pob1 participates in the Cdc42 regulation of fission yeast actin cytoskeleton. Mol. Biol. Cell 20, 4390–4399 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002).

    CAS  PubMed  Google Scholar 

  22. Leung, D. W. & Rosen, M. K. The nucleotide switch in Cdc42 modulates coupling between the GTPase-binding and allosteric equilibria of Wiskott–Aldrich syndrome protein. Proc. Natl Acad. Sci. USA 102, 5685–5690 (2005).

    CAS  PubMed  Google Scholar 

  23. Otomo, T., Otomo, C., Tomchick, D. R., Machius, M. & Rosen, M. K. Structural basis of rho GTPase-mediated activation of the formin mDia1. Mol. Cell 18, 273–281 (2005).

    CAS  PubMed  Google Scholar 

  24. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Higgs, H. N. & Pollard, T. D. Activation by Cdc42 and Pip2 of Wiskott–Aldrich syndrome protein (Wasp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol. 150, 1311–1320 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    CAS  PubMed  Google Scholar 

  27. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Alberts, A. S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276, 2824–2830 (2001).

    CAS  PubMed  Google Scholar 

  29. Li, F. & Higgs, H. N. The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 (2003).

    CAS  PubMed  Google Scholar 

  30. Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M. & Faix, J. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat. Cell Biol. 7, 619–625 (2005).

    CAS  PubMed  Google Scholar 

  31. Seth, A., Otomo, C. & Rosen, M. K. Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLα and mDia1. J. Cell Biol. 174, 701–713 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Leavitt, J. et al. Expression of transfected mutant beta-actin genes: alterations of cell morphology and evidence for autoregulation in actin pools. Mol. Cell. Biol. 7, 2457–2466 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Burke, T. A. et al. Homeostatic actin cytoskeleton networks are regulated by assembly factor competition for monomers. Curr. Biol. 24, 579–585 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan, Y.-H. M. & Marshall, W. F. How cells know the size of their organelles. Science 337, 1186–1189 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Goehring, N. W. & Hyman, A. A. Organelle growth control through limiting pools of cytoplasmic components. Curr. Biol. 22, R330–R339 (2012).

    CAS  PubMed  Google Scholar 

  36. Cramer, L. P. Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr. Biol. 9, 1095–1105 (1999).

    CAS  PubMed  Google Scholar 

  37. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M.-F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    CAS  PubMed  Google Scholar 

  38. Higgs, H. N., Blanchoin, L. & Pollard, T. D. Influence of the C terminus of Wiskott–Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry 38, 15212–15222 (1999).

    CAS  PubMed  Google Scholar 

  39. Suarez, C. et al. Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex. Dev. Cell 32, 43–53 (2015).

    CAS  PubMed  Google Scholar 

  40. Higashida, C. et al. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers. J. Cell Sci. 121, 3403–3412 (2008).

    CAS  PubMed  Google Scholar 

  41. Higashida, C. et al. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins. Nat. Cell Biol. 15, 395–405 (2013).

    CAS  PubMed  Google Scholar 

  42. Basu, R. & Chang, F. Characterization of Dip1p reveals a switch in Arp2/3-dependent actin assembly for fission yeast endocytosis. Curr. Biol. 21, 905–916 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakano, K., Kuwayama, H., Kawasaki, M., Numata, O. & Takaine, M. GMF is an evolutionarily developed Adf/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton. Cytoskeleton 67, 373–382 (2010).

    CAS  PubMed  Google Scholar 

  44. Jose, M. et al. A quantitative imaging-based screen reveals the exocyst as a network hub connecting endo- and exocytosis. Mol. Biol. Cell 26, 2519–2534 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Willet, A. H. et al. The F-BAR Cdc15 promotes contractile ring formation through the direct recruitment of the formin Cdc12. J. Cell Biol. 208, 391–399 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Courtemanche, N., Pollard, T. D. & Chen, Q. Avoiding artefacts when counting polymerized actin in live cells with LifeAct fused to fluorescent proteins. Nat. Cell Biol. 18, 676–683 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Koestler, S. A. et al. Arp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin. Mol. Biol. Cell 24, 2861–2875 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Suraneni, P. et al. A mechanism of leading edge protrusion in the absence of Arp2/3 complex. Mol. Biol. Cell 26, 901–912 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Henson, J. H. et al. Arp2/3 complex inhibition radically alters lamellipodial actin architecture, suspended cell shape, and the cell spreading process. Mol. Biol. Cell 26, 887–900 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ingerman, E., Hsiao, J. Y. & Mullins, R. D. Arp2/3 complex ATP hydrolysis promotes lamellipodial actin network disassembly but is dispensable for assembly. J. Cell Biol. 200, 619–633 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarmiento, C. et al. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J. Cell Biol. 180, 1245–1260 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, Q., Zhang, X.-F., Pollard, T. D. & Forscher, P. Arp2/3 complex-dependent actin networks constrain myosin II function in driving retrograde actin flow. J. Cell Biol. 197, 939–956 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grega-Larson, N. E., Crawley, S. W., Erwin, A. L. & Tyska, M. J. Cordon bleu promotes the assembly of brush border microvilli. Mol. Biol. Cell 26, 3803–3815 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, Q. & Pollard, T. D. Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring. J. Cell Biol. 195, 485–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghosh, M. et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743–746 (2004).

    CAS  PubMed  Google Scholar 

  58. Kiuchi, T., Ohashi, K., Kurita, S. & Mizuno, K. Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. J. Cell Biol. 177, 465–476 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kiuchi, T., Nagai, T., Ohashi, K. & Mizuno, K. Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. J. Cell Biol. 193, 365–380 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakano, K. & Mabuchi, I. Actin-depolymerizing protein Adf1 is required for formation and maintenance of the contractile ring during cytokinesis in fission yeast. Mol. Biol. Cell 17, 1933–1945 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Balasubramanian, M. K., Hirani, B. R., Burke, J. D. & Gould, K. L. The Schizosaccharomyces pombe cdc3+ gene encodes a profilin essential for cytokinesis. J. Cell Biol. 125, 1289–1301 (1994).

    CAS  PubMed  Google Scholar 

  62. Balasubramanian, M. K., Bi, E. & Glotzer, M. Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells. Curr. Biol. 14, R806–R818 (2004).

    CAS  PubMed  Google Scholar 

  63. Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N. & Pollard, T. D. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124, 423–435 (2006).

    CAS  PubMed  Google Scholar 

  64. Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

    CAS  PubMed  Google Scholar 

  65. Higashida, C. et al. Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303, 2007–2010 (2004).

    CAS  PubMed  Google Scholar 

  66. Barzik, M. et al. Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J. Biol. Chem. 280, 28653–28662 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pasic, L., Kotova, T. & Schafer, D. A. Ena/VASP proteins capture actin filament barbed ends. J. Biol. Chem. 283, 9814–9819 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hansen, S. D. & Mullins, R. D. VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J. Cell Biol. 191, 571–584 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    CAS  PubMed  Google Scholar 

  70. Pernier, J., Shekhar, S., Jegou, A., Guichard, B. & Carlier, M.-F. Profilin interaction with actin filament barbed end controls dynamic instability, capping, branching, and motility. Dev. Cell 36, 201–214 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodal, A. A., Manning, A. L., Goode, B. L. & Drubin, D. G. Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr. Biol. 13, 1000–1008 (2003).

    CAS  PubMed  Google Scholar 

  72. Marchand, J.-B., Kaiser, D. A., Pollard, T. D. & Higgs, H. N. Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat. Cell Biol. 3, 76–82 (2001).

    CAS  PubMed  Google Scholar 

  73. Fan, Y. et al. Stimulus-dependent phosphorylation of profilin-1 in angiogenesis. Nat. Cell Biol. 14, 1046–1056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Buss, F., Temm-Grove, C., Henning, S. & Jockusch, B. M. Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments. Cell Motil. Cytoskeleton 22, 51–61 (1992).

    CAS  PubMed  Google Scholar 

  75. Mouneimne, G. et al. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion. Cancer Cell 22, 615–630 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Neidt, E. M., Scott, B. J. & Kovar, D. R. Formin differentially utilizes profilin isoforms to rapidly assemble actin filaments. J. Biol. Chem. 284, 673–684 (2009).

    CAS  PubMed  Google Scholar 

  77. Schafer, D. A., Jennings, P. B. & Cooper, J. A. Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 135, 169–179 (1996).

    CAS  PubMed  Google Scholar 

  78. Winkelman, J. D., Bilancia, C. G., Peifer, M. & Kovar, D. R. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. Proc. Natl Acad. Sci. USA 111, 4121–4126 (2014).

    CAS  PubMed  Google Scholar 

  79. Bear, J. E. et al. Antagonism between ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    CAS  PubMed  Google Scholar 

  80. Shekhar, S. et al. Formin and capping protein together embrace the actin filament in a ménage à trois. Nat. Commun. 6, 8730 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bombardier, J. P. et al. Single-molecule visualization of a formin-capping protein 'decision complex' at the actin filament barbed end. Nat. Commun. 6, 8707 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Amatruda, J. F., Cannon, J. F., Tatchell, K., Hug, C. & Cooper, J. A. Disruption of the actin cytoskeleton in yeast capping protein mutants. Nature 344, 352–354 (1990).

    CAS  PubMed  Google Scholar 

  83. Berro, J. & Pollard, T. D. Synergies between Aip1p and capping protein subunits (Acp1p and Acp2p) in clathrin-mediated endocytosis and cell polarization in fission yeast. Mol. Biol. Cell 25, 3515–3527 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Kim, K., Yamashita, A., Wear, M. A., Maéda, Y. & Cooper, J. A. Capping protein binding to actin in yeast biochemical mechanism and physiological relevance. J. Cell Biol. 164, 567–580 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kovar, D. R., Wu, J.-Q. & Pollard, T. D. Profilin-mediated competition between capping protein and formin Cdc12p during cytokinesis in fission yeast. Mol. Biol. Cell 16, 2313–2324 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sizonenko, G. I., Karpova, T. S., Gattermeir, D. J. & Cooper, J. A. Mutational analysis of capping protein function in Saccharomyces cerevisiae. Mol. Biol. Cell 7, 1–15 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mejillano, M. R. et al. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363–373 (2004).

    CAS  PubMed  Google Scholar 

  88. Sinnar, S. A., Antoku, S., Saffin, J.-M., Cooper, J. A. & Halpain, S. Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics. Mol. Biol. Cell 25, 2152–2160 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Akin, O. & Mullins, R. D. Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 133, 841–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Edwards, M. et al. Capping protein regulators fine-tune actin assembly dynamics. Nat. Rev. Mol. Cell Biol. 15, 677–689 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Edwards, M., McConnell, P., Schafer, D. A. & Cooper, J. A. CPI motif interaction is necessary for capping protein function in cells. Nat. Commun. 6, 8415 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lomakin, A. J. et al. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat. Cell Biol. 17, 1435–1445 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gunning, P. W., Hardeman, E. C., Lappalainen, P. & Mulvihill, D. P. Tropomyosin — master regulator of actin filament function in the cytoskeleton. J. Cell Sci. 128, 2965–2974 (2015).

    CAS  PubMed  Google Scholar 

  96. Johnson, M., East, D. A. & Mulvihill, D. P. Formins determine the functional properties of actin filaments in yeast. Curr. Biol. 24, 1525–1530 (2014).

    CAS  PubMed  Google Scholar 

  97. Hsiao, J. Y., Goins, L. M., Petek, N. A. & Mullins, R. D. Arp2/3 complex and cofilin modulate binding of tropomyosin to branched actin networks. Curr. Biol. 25, 1573–1582 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gupton, S. L. et al. Cell migration without a lamellipodium. J. Cell Biol. 168, 619–631 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mullins, R. D. & Pollard, T. D. Rho-family GTPases require the Arp2/3 complex to stimulate actin polymerizationin Acanthamoeba extracts. Curr. Biol. 9, 405–415 (1999).

    CAS  PubMed  Google Scholar 

  100. Zigmond, S. H. et al. Mechanism of Cdc42-induced actin polymerization in neutrophil extracts. J. Cell Biol. 142, 1001–1012 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Young, L. E., Heimsath, E. G. & Higgs, H. N. Cell type-dependent mechanisms for formin-mediated assembly of filopodia. Mol. Biol. Cell 26, 4646–4659 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Biyasheva, A., Svitkina, T., Kunda, P., Baum, B. & Borisy, G. Cascade pathway of filopodia formation downstream of SCAR. J. Cell Sci. 117, 837–848 (2004).

    CAS  PubMed  Google Scholar 

  103. Ramalingam, N. et al. A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement. Nat. Commun. 6, 8496 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Vitriol, E. A. et al. Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia. Cell Rep. 11, 433–445 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Neidt, E. M., Skau, C. T. & Kovar, D. R. The cytokinesis formins from the nematode worm and fission yeast differentially mediate actin filament assembly. J. Biol. Chem. 283, 23872–23883 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gouin, E., Welch, M. D. & Cossart, P. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35–45 (2005).

    CAS  PubMed  Google Scholar 

  107. Haglund, C. M., Choe, J. E., Skau, C. T., Kovar, D. R. & Welch, M. D. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 12, 1057–1063 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Madasu, Y., Suarez, C., Kast, D. J., Kovar, D. R. & Dominguez, R. Rickettsia Sca2 has evolved formin-like activity through a different molecular mechanism. Proc. Natl Acad. Sci. USA 110, E2677–E2686 (2013).

    CAS  PubMed  Google Scholar 

  109. Lacayo, C. I. & Theriot, J. A. Listeria monocytogenes actin-based motility varies depending on subcellular location: a kinematic probe for cytoarchitecture. Mol. Biol. Cell 15, 2164–2175 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Moseley, J. B. & Goode, B. L. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev. 70, 605–645 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hannapel, E. & van Kampen, M. Determination of thymosin β4 in human blood cells and serum. J. Chromatogr. A 397, 279–285 (1987).

    Google Scholar 

  112. Safer, D., Elzinga, M. & Nachmias, V. T. Thymosin β4 and Fx, an actin-sequestering peptide, are indistinguishable. J. Biol. Chem. 266, 4029–4032 (1991).

    CAS  PubMed  Google Scholar 

  113. Carlier, M. F., Jean, C., Rieger, K. J., Lenfant, M. & Pantaloni, D. Modulation of the interaction between G-actin and thymosin β4 by the ATP/ADP ratio: possible implication in the regulation of actin dynamics. Proc. Natl Acad. Sci. USA 90, 5034–5038 (1993).

    CAS  PubMed  Google Scholar 

  114. Goldschmidt-Clermont, P. J., Machesky, L. M., Doberstein, S. K. & Pollard, T. D. Mechanism of the interaction of human platelet profilin with actin. J. Cell Biol. 113, 1081–1089 (1991).

    CAS  PubMed  Google Scholar 

  115. Goldschmidt-Clermont, P. J. et al. The control of actin nucleotide exchange by thymosin β4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol. Biol. Cell 3, 1015–1024 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kang, F., Purich, D. L. & Southwick, F. S. Profilin promotes barbed-end actin filament assembly without lowering the critical concentration. J. Biol. Chem. 274, 36963–36972 (1999).

    CAS  PubMed  Google Scholar 

  117. Kaiser, D. A., Vinson, V. K., Murphy, D. B. & Pollard, T. D. Profilin is predominantly associated with monomeric actin in Acanthamoeba. J. Cell Sci. 112, 3779–3790 (1999).

    CAS  PubMed  Google Scholar 

  118. Pollard, T. D. & Cooper, J. A. Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry 23, 6631–6641 (1984).

    CAS  PubMed  Google Scholar 

  119. Pring, M., Weber, A. & Bubb, M. R. Profilin–actin complexes directly elongate actin filaments at the barbed end. Biochemistry 31, 1827–1836 (1992).

    CAS  PubMed  Google Scholar 

  120. Harris, E. S., Li, F. & Higgs, H. N. The mouse formin, FRLα, slows actin filament barbed end elongation, competes with capping protein, accelerates polymerization from monomers, and severs filaments. J. Biol. Chem. 279, 20076–20087 (2004).

    CAS  PubMed  Google Scholar 

  121. Moseley, J. B. et al. A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol. Biol. Cell 15, 896–907 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zigmond, S. H. et al. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr. Biol. 13, 1820–1823 (2003).

    CAS  PubMed  Google Scholar 

  123. Campellone, K. G. & Welch, M. D. A nucleator arms race: Cellular control of actin assembly. Nat. Rev. Microbiol. 11, 237–251 (2010).

    CAS  Google Scholar 

  124. Carlier, M.-F., Husson, C., Renault, L. & Didry, D. in International Review of Cell and Molecular Biology (ed. Jeon, K. W.) 290, 55–85 (Elsevier, 2011).

    Google Scholar 

  125. Goley, E. D. & Welch, M. D. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–726 (2006).

    CAS  PubMed  Google Scholar 

  126. Goode, B. L. & Eck, M. J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 76, 593–627 (2007).

    CAS  PubMed  Google Scholar 

  127. Bernstein, B. W. & Bamburg, J. R. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 20, 187–195 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Blanchoin, L. & Pollard, T. D. Mechanism of interaction of Acanthamoeba actophorin (ADF/cofilin) with actin filaments. J. Biol. Chem. 274, 15538–15546 (1999).

    CAS  PubMed  Google Scholar 

  129. McCullough, B. R., Blanchoin, L., Martiel, J.-L. & De La Cruz, E. M. Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics. J. Mol. Biol. 381, 550–558 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Fujiwara, I., Remmert, K. & Hammer, J. A. Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3. J. Biol. Chem. 285, 2707–2720 (2010).

    CAS  PubMed  Google Scholar 

  131. Miyoshi, T. et al. Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. J. Cell Biol. 175, 947–955 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Carlier, M.-F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hotulainen, P., Paunola, E., Vartiainen, M. K. & Lappalainen, P. Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol. Biol. Cell 16, 649–664 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Jansen, S. et al. Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat. Commun. 6, 7202 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Mikati, M. A., Breitsprecher, D., Jansen, S., Reisler, E. & Goode, B. L. Coronin enhances actin filament severing by recruiting cofilin to filament sides and altering F-actin conformation. J. Mol. Biol. 427, 3137–3147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mohri, K., Vorobiev, S., Fedorov, A. A., Almo, S. C. & Ono, S. Identification of functional residues on Caenorhabditis elegans actin-interacting protein 1 (UNC-78) for disassembly of actin depolymerizing factor/cofilin-bound actin filaments. J. Biol. Chem. 279, 31697–31707 (2004).

    CAS  PubMed  Google Scholar 

  137. Ono, S., Mohri, K. & Ono, K. Microscopic evidence that actin-interacting protein 1 actively disassembles actin-depolymerizing factor/cofilin-bound actin filaments. J. Biol. Chem. 279, 14207–14212 (2004).

    CAS  PubMed  Google Scholar 

  138. Chaudhry, F. et al. Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin. Mol. Biol. Cell 24, 31–41 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Johnston, A. B., Collins, A. & Goode, B. L. High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP. Nat. Cell Biol. 17, 1504–1511 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yamashiro, S. et al. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales. Mol. Biol. Cell 25, 1010–1024 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. McCall (University of Chicago, Illinois, USA) and members of the Kovar laboratory, including J. Winkelman, J. Christensen and T. Burke for discussions and comments. Work on actin cytoskeleton regulation in the Kovar laboratory is supported by US National Institutes of Health grant R01 GM079265. C.S. has also been supported in part by the US Department of Defence and the US Army Research Laboratory's Army Research Office through a multidisciplinary university research initiative (MURI) grant, number W911NF1410403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Kovar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suarez, C., Kovar, D. Internetwork competition for monomers governs actin cytoskeleton organization. Nat Rev Mol Cell Biol 17, 799–810 (2016). https://doi.org/10.1038/nrm.2016.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing