Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emergency granulopoiesis

Key Points

  • Emergency granulopoiesis is defined as the well-orchestrated de novo generation of neutrophils in response to systemically disseminated infection. The overall goal of this process is to enhance neutrophil output from the bone marrow to meet the higher demand for neutrophils during severe infection when these cells are consumed in large quantities during the innate immune response.

  • Emergency granulopoiesis can be dissected into three phases: pathogen sensing is followed by translation of this signal into enhanced granulocytic cell production in the bone marrow, and then the subsequent re-establishment of homeostatic steady-state conditions once the infection has been cleared.

  • Pathogen sensing mainly occurs in non-haematopoietic cells through Toll-like receptor signalling and leads to the subsequent initiation of emergency granulopoiesis through the release of granulopoietic cytokines. In addition, pathogen sensing by haematopoietic stem and progenitor cells themselves might contribute to the overall granulopoietic response directly by promoting proliferation and myeloid cell differentiation, and also indirectly through the release of cytokines by early haematopoietic cells that signal in a paracrine and autocrine manner. The biological relevance of direct pathogen sensing by haematopoietic stem and progenitor cells in acute and chronic inflammation remains to be determined.

  • Granulocyte colony-stimulating factor is the major granulopoietic cytokine regulating both steady-state and emergency granulopoiesis. At the transcriptional level, CCAAT-enhancer-binding protein-α (C/EBPα) drives steady-state granulopoiesis, whereas C/EBPβ is the master regulator of emergency granulopoiesis.

  • The mechanisms that restrain emergency granulopoiesis and orchestrate the return to steady-state conditions are incompletely understood but are known to involve suppressor of cytokine signalling proteins.

Abstract

Neutrophils are a key cell type of the innate immune system. They are short-lived and need to be continuously generated in steady-state conditions from haematopoietic stem and progenitor cells in the bone marrow to ensure their immediate availability for the containment of invading pathogens. However, if microbial infection cannot be controlled locally, and consequently develops into a life-threatening condition, neutrophils are used up in large quantities and the haematopoietic system has to rapidly adapt to the increased demand by switching from steady-state to emergency granulopoiesis. This involves the markedly increased de novo production of neutrophils, which results from enhanced myeloid precursor cell proliferation in the bone marrow. In this Review, we discuss the molecular and cellular events that regulate emergency granulopoiesis, a process that is crucial for host survival.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The haematopoietic hierarchy.
Figure 2: Local versus systemic bacterial infection.
Figure 3: Direct and indirect pathways for the activation of emergency granulopoiesis.
Figure 4: Signal transduction and transcriptional networks in steady-state and emergency granulopoiesis.
Figure 5: An integrated model of emergency granulopoiesis.

Similar content being viewed by others

References

  1. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Tak, T., Tesselaar, K., Pillay, J., Borghans, J. A. & Koenderman, L. What's your age again? Determination of human neutrophil half-lives revisited. J. Leukoc. Biol. 94, 595–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Dancey, J. T., Deubelbeiss, K. A., Harker, L. A. & Finch, C. A. Neutrophil kinetics in man. J. Clin. Invest. 58, 705–715 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nature Rev. Immunol. 13, 159–175 (2013). This excellent review covers neutrophil recruitment and function in steady-state conditions and during inflammation. Neutrophil recruitment is a distinct biological process from emergency granulopoiesis but is relevant to the general context of innate immune responses.

    Article  CAS  Google Scholar 

  5. Elks, P. M. et al. Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood 118, 712–722 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Mathias, J. R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281–1288 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Woodfin, A. et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nature Immunol. 12, 761–769 (2011).

    Article  CAS  Google Scholar 

  8. Bonilla, M. A. et al. Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N. Engl. J. Med. 320, 1574–1580 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Bennett, C. L., Djulbegovic, B., Norris, L. B. & Armitage, J. O. Colony-stimulating factors for febrile neutropenia during cancer therapy. N. Engl. J. Med. 368, 1131–1139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Croker, B. A. et al. SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20, 153–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Watari, K. et al. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 73, 117–122 (1989).

    CAS  PubMed  Google Scholar 

  12. Kawakami, M. et al. Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76, 1962–1964 (1990).

    CAS  PubMed  Google Scholar 

  13. Cebon, J., Layton, J. E., Maher, D. & Morstyn, G. Endogenous haemopoietic growth factors in neutropenia and infection. Br. J. Haematol. 86, 265–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Cheers, C. et al. Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect. Immun. 56, 247–251 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Selig, C. & Nothdurft, W. Cytokines and progenitor cells of granulocytopoiesis in peripheral blood of patients with bacterial infections. Infect. Immun. 63, 104–109 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Presneill, J. J. et al. Plasma granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor levels in critical illness including sepsis and septic shock: relation to disease severity, multiple organ dysfunction, and mortality. Crit. Care Med. 28, 2344–2354 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Waring, P. M. et al. Differential alterations in plasma colony-stimulating factor concentrations in meningococcaemia. Clin. Exp. Immunol. 102, 501–506 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka, H., Ishikawa, K., Nishino, M., Shimazu, T. & Yoshioka, T. Changes in granulocyte colony-stimulating factor concentration in patients with trauma and sepsis. J. Trauma 40, 718–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nature Rev. Immunol. 8, 533–544 (2008).

    Article  CAS  Google Scholar 

  20. Kaushansky, K. Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354, 2034–2045 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G. & de Vries, J. E. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209–1220 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. He, R. L. et al. Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood 113, 429–437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vellenga, E., Rambaldi, A., Ernst, T. J., Ostapovicz, D. & Griffin, J. D. Independent regulation of M-CSF and G-CSF gene expression in human monocytes. Blood 71, 1529–1532 (1988).

    CAS  PubMed  Google Scholar 

  24. Nishizawa, M. & Nagata, S. Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages. Mol. Cell. Biol. 10, 2002–2011 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schilling, J. D., Martin, S. M., Hung, C. S., Lorenz, R. G. & Hultgren, S. J. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 100, 4203–4208 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Med. 15, 410–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Andonegui, G. et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J. Clin. Invest. 111, 1011–1020 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andonegui, G. et al. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J. Clin. Invest. 119, 1921–1930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hwa Cho, H., Bae, Y. C. & Jung, J. S. Role of Toll-like receptors on human adipose-derived stromal cells. Stem Cells 24, 2744–2752 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Liotta, F. et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26, 279–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Tomchuck, S. L. et al. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26, 99–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Pevsner-Fischer, M. et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109, 1422–1432 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Shi, C. et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34, 590–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Boettcher, S. et al. Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J. Immunol. 188, 5824–5828 (2012). This study reveals for the first time that, in contrast to popular belief, it is not haematopoietic but non- haematopoietic cells that are the primary cell type that translates the sensing of systemically disseminated LPS into an emergency granulopoiesis response, through an increase in the production of G-CSF.

    Article  CAS  PubMed  Google Scholar 

  36. Schmid, M. A., Takizawa, H., Baumjohann, D. R., Saito, Y. & Manz, M. G. Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes. Blood 118, 4829–4840 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Nagai, Y. et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24, 801–812 (2006). This study shows that HSPCs can directly sense TLR agonists and that they respond with cytokine-independent myelopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chicha, L., Jarrossay, D. & Manz, M. G. Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations. J. Exp. Med. 200, 1519–1524 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Luca, K. et al. The TLR1/2 agonist PAM3CSK4 instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 23, 2063–2074 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Sioud, M. & Floisand, Y. TLR agonists induce the differentiation of human bone marrow CD34+ progenitors into CD11c+ CD80/86+ DC capable of inducing a Th1-type response. Eur. J. Immunol. 37, 2834–2846 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Sioud, M., Floisand, Y., Forfang, L. & Lund-Johansen, F. Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J. Mol. Biol. 364, 945–954 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Massberg, S. et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994–1008 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature Immunol. 8, 1207–1216 (2007).

    Article  CAS  Google Scholar 

  45. Zhao, J. L. et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell http://dx.doi.org/10.1016/j.stem.2014.01.007 (2014).

  46. Schurch, C. M., Riether, C. & Ochsenbein, A. F. Cytotoxic CD8 T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell http://dx.doi.org/10.1016/j.stem.2014.01.002 (2014).

  47. Takizawa, H., Regoes, R. R., Boddupalli, C. S., Bonhoeffer, S. & Manz, M. G. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J. Exp. Med. 208, 273–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, P. et al. The lineage-c-Kit+Sca-1+ cell response to Escherichia coli bacteremia in Balb/c mice. Stem Cells 26, 1778–1786 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez, S. et al. Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood 114, 4064–4076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, C., Liu, Y. & Zheng, P. Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. J. Clin. Invest. 120, 4091–4101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Esplin, B. L. et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J. Immunol. 186, 5367–5375 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Ichii, M. et al. Functional diversity of stem and progenitor cells with B-lymphopoietic potential. Immunol. Rev. 237, 10–21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lieschke, G. J. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746 (1994). A seminal in vivo study showing that G-CSF is an essential haematopoietic growth factor for granulocyte homeostasis in the steady state and during emergency granulopoiesis.

    CAS  PubMed  Google Scholar 

  54. Liu, F., Wu, H. Y., Wesselschmidt, R., Kornaga, T. & Link, D. C. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5, 491–501 (1996). References 53 and 54 demonstrate the importance of the G-CSF–G-CSFR signalling axis in neutrophil development.

    Article  CAS  PubMed  Google Scholar 

  55. Zhan, Y., Lieschke, G. J., Grail, D., Dunn, A. R. & Cheers, C. Essential roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice. Blood 91, 863–869 (1998).

    CAS  PubMed  Google Scholar 

  56. Basu, S. et al. “Emergency” granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95, 3725–3733 (2000).

    CAS  PubMed  Google Scholar 

  57. Gasson, J. C. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77, 1131–1145 (1991).

    CAS  PubMed  Google Scholar 

  58. Lang, R. A. et al. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 51, 675–686 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Metcalf, D. et al. Hemopoietic responses in mice injected with purified recombinant murine GM-CSF. Exp. Hematol. 15, 1–9 (1987).

    CAS  PubMed  Google Scholar 

  60. Stanley, E. et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl Acad. Sci. USA 91, 5592–5596 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seymour, J. F. et al. Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood 90, 3037–3049 (1997).

    CAS  PubMed  Google Scholar 

  62. Kingston, D. et al. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 114, 835–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Zhan, Y. & Cheers, C. Haemopoiesis in mice genetically lacking granulocyte-macrophage colony stimulating factor during chronic infection with Mycobacterium avium. Immunol. Cell Biol. 78, 118–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Hibbs, M. L. et al. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J. Immunol. 178, 6435–6443 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Romani, L. et al. Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J. Exp. Med. 183, 1345–1355 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Walker, F. et al. IL6/sIL6R complex contributes to emergency granulopoietic responses in G-CSF- and GM-CSF-deficient mice. Blood 111, 3978–3985 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. King, K. Y. & Goodell, M. A. Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nature Rev. Immunol. 11, 685–692 (2011).

    Article  CAS  Google Scholar 

  68. Mercier, F. E., Ragu, C. & Scadden, D. T. The bone marrow at the crossroads of blood and immunity. Nature Rev. Immunol. 12, 49–60 (2012).

    Article  CAS  Google Scholar 

  69. Takizawa, H., Boettcher, S. & Manz, M. G. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119, 2991–3002 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. McKinstry, W. J. et al. Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 89, 65–71 (1997).

    CAS  PubMed  Google Scholar 

  71. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Panopoulos, A. D. et al. STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood 108, 3682–3690 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, H. et al. STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood 116, 2462–2471 (2010). The authors show that G-CSF-induced signal transduction in myeloid progenitors during G-CSF- or L. monocytogenes -driven emergency granulopoiesis occurs via STAT3 and results in increased myeloid progenitor cell proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hirai, H. et al. C/EBPβ is required for 'emergency' granulopoiesis. Nature Immunol. 7, 732–739 (2006). This seminal study shows that C/EBPβ is the essential transcription factor that initiates the emergency granulopoiesis programme.

    Article  CAS  Google Scholar 

  75. Satake, S. et al. C/EBPβ is involved in the amplification of early granulocyte precursors during candidemia-induced “emergency” granulopoiesis. J. Immunol. 189, 4546–4555 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Metcalf, D. Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 92, 345–352 (1998).

    CAS  PubMed  Google Scholar 

  77. Iwasaki-Arai, J., Iwasaki, H., Miyamoto, T., Watanabe, S. & Akashi, K. Enforced granulocyte/macrophage colony-stimulating factor signals do not support lymphopoiesis, but instruct lymphoid to myelomonocytic lineage conversion. J. Exp. Med. 197, 1311–1322 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kondo, M. et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407, 383–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A. & Manz, M. G. Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. J. Exp. Med. 203, 227–238 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. King, A. G., Kondo, M., Scherer, D. C. & Weissman, I. L. Lineage infidelity in myeloid cells with TCR gene rearrangement: A latent developmental potential of proT cells revealed by ectopic cytokine receptor signaling. Proc. Natl Acad. Sci. USA 99, 4508–4513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rieger, M. A., Hoppe, P. S., Smejkal, B. M., Eitelhuber, A. C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009). This elegant study shows that the haematopoietic cytokines G-CSF and M-CSF directly instruct lineage choice in bipotent granulocyte–macrophage progenitors.

    Article  CAS  PubMed  Google Scholar 

  82. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Baldridge, M. T., King, K. Y., Boles, N. C., Weksberg, D. C. & Goodell, M. A. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465, 793–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Essers, M. A. et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Sato, T. et al. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nature Med. 15, 696–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. de Bruin, A. M., Demirel, O., Hooibrink, B., Brandts, C. H. & Nolte, M. A. Interferon-gamma impairs proliferation of hematopoietic stem cells in mice. Blood 121, 3578–3585 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Saito, Y. et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nature Biotech. 28, 275–280 (2010).

    Article  CAS  Google Scholar 

  89. Mossadegh-Keller, N. et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497, 239–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rosenbauer, F. & Tenen, D. G. Transcription factors in myeloid development: balancing differentiation with transformation. Nature Rev. Immunol. 7, 105–117 (2007).

    Article  CAS  Google Scholar 

  91. Zhang, D. E. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl Acad. Sci. USA 94, 569–574 (1997). This study shows that C/EBPα is essential for steady-state granulopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, P. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21, 853–863 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, P. et al. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein-α (C/EBPα) is critical for granulopoiesis. J. Exp. Med. 188, 1173–1184 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Collins, S. J., Ulmer, J., Purton, L. E. & Darlington, G. Multipotent hematopoietic cell lines derived from C/EBPalpha(−/−) knockout mice display granulocyte macrophage-colony-stimulating factor, granulocyte- colony-stimulating factor, and retinoic acid-induced granulocytic differentiation. Blood 98, 2382–2388 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, P. et al. Induction of granulocytic differentiation by 2 pathways. Blood 99, 4406–4412 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Akagi, T. et al. Impaired response to GM-CSF and G-CSF, and enhanced apoptosis in C/EBPβ-deficient hematopoietic cells. Blood 111, 2999–3004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, H. et al. C/EBPα arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell 8, 817–828 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Johansen, L. M. et al. c-Myc is a critical target for c/EBPα in granulopoiesis. Mol. Cell. Biol. 21, 3789–3806 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McLemore, M. L. et al. STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity 14, 193–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Feldman, G. M. et al. STAT5A-deficient mice demonstrate a defect in granulocyte-macrophage colony-stimulating factor-induced proliferation and gene expression. Blood 90, 1768–1776 (1997).

    CAS  PubMed  Google Scholar 

  101. Mui, A. L., Wakao, H., Harada, N., O'Farrell, A. M. & Miyajima, A. Interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5 transduce signals through two forms of STAT5. J. Leukoc. Biol. 57, 799–803 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Kimura, A. et al. The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. Blood 114, 4721–4728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kimura, A. et al. SOCS3 is a physiological negative regulator for granulopoiesis and granulocyte colony-stimulating factor receptor signaling. J. Biol. Chem. 279, 6905–6910 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Alexander, W. S. & Hilton, D. J. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Ann. Rev. Immunol. 22, 503–529 (2004).

    Article  CAS  Google Scholar 

  105. Hortner, M. et al. Suppressor of cytokine signaling-3 is recruited to the activated granulocyte-colony stimulating factor receptor and modulates its signal transduction. J. Immunol. 169, 1219–1227 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Hermans, M. H. et al. Signaling mechanisms coupled to tyrosines in the granulocyte colony-stimulating factor receptor orchestrate G-CSF-induced expansion of myeloid progenitor cells. Blood 101, 2584–2590 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Boyle, K. et al. The SOCS box of suppressor of cytokine signaling-3 contributes to the control of G-CSF responsiveness in vivo. Blood 110, 1466–1474 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kreisel, D. et al. Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis. J. Clin. Invest. 121, 265–276 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Wulczyn, F. G., Naumann, M. & Scheidereit, C. Candidate proto-oncogene bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-κB. Nature 358, 597–599 (1992).

    Article  CAS  PubMed  Google Scholar 

  110. Dechend, R. et al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene 18, 3316–3323 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Lang, R., Patel, D., Morris, J. J., Rutschman, R. L. & Murray, P. J. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169, 2253–2263 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Kuwata, H. et al. IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-α production in macrophages. Blood 102, 4123–4129 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Carmody, R. J., Ruan, Q., Palmer, S., Hilliard, B. & Chen, Y. H. Negative regulation of toll-like receptor signaling by NF-κB p50 ubiquitination blockade. Science 317, 675–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Ueda, Y., Cain, D. W., Kuraoka, M., Kondo, M. & Kelsoe, G. IL-1R type I-dependent hemopoietic stem cell proliferation is necessary for inflammatory granulopoiesis and reactive neutrophilia. J. Immunol. 182, 6477–6484 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. van Wessem, K. J., Heeres, M., Leliefeld, P. H., Koenderman, L. & Leenen, L. P. Lipopolysaccharide and hemorrhagic shock cause systemic inflammation by different mechanisms. J. Trauma Acute Care Surg. 74, 37–43; discussion 43–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Ueda, Y., Kondo, M. & Kelsoe, G. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J. Exp. Med. 201, 1771–1780 (2005). The authors of this study propose a model of competition for space and growth factors between B lymphopoiesis and granulopoiesis, in which inflammation depletes the B cell content in bone marrow leading to reactive granulopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ueda, Y., Yang, K., Foster, S. J., Kondo, M. & Kelsoe, G. Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. J. Exp. Med. 199, 47–58 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma, Q., Jones, D. & Springer, T. A. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10, 463–471 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Cain, D. W., Snowden, P. B., Sempowski, G. D. & Kelsoe, G. Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism. PLoS ONE 6, e19957 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bugl, S. et al. Steady-state neutrophil homeostasis is dependent on TLR4/TRIF signaling. Blood 121, 723–733 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Yang, C., Li, Y. C. & Kuter, D. J. The physiological response of thrombopoietin (c-Mpl ligand) to thrombocytopenia in the rat. Br. J. Haematol. 105, 478–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Stoffel, R., Wiestner, A. & Skoda, R. C. Thrombopoietin in thrombocytopenic mice: evidence against regulation at the mRNA level and for a direct regulatory role of platelets. Blood 87, 567–573 (1996).

    CAS  PubMed  Google Scholar 

  124. Saito, Y., Boddupalli, C. S., Borsotti, C. & Manz, M. G. Dendritic cell homeostasis is maintained by nonhematopoietic and T-cell-produced Flt3-ligand in steady state and during immune responses. Eur. J. Immunol. 43, 1651–1658 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Bartocci, A. et al. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc. Natl Acad. Sci. USA 84, 6179–6183 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kristinsson, S. Y. et al. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J. Clin. Oncol. 29, 2897–2903 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nature Genet. 43, 830–837 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ngo, V. N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Treon, S. P. et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N. Engl. J. Med. 367, 826–833 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the authors' laboratory is supported by grants from the Swiss National Science Foundation (310030_146528/1), the Promedica Foundation, Switzerland, and the Clinical Research Priority Program of the University of Zürich, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus G. Manz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Granulocytes

The generic term for neutrophils, eosinophils and basophils, which have in common a granule-rich cytoplasm. Neutrophils make up the vast majority (90%) of granulocytes in peripheral blood.

Neutrophilia

A relative or absolute increase in the number of neutrophils in the blood.

Neutrophil extracellular traps

(NETs). These are mainly composed of DNA that is released from neutrophils upon pathogen encounter. NETs have microbicidal activity and bind to pathogens, thereby preventing pathogen dissemination.

Mesenchymal stromal cells

A heterogeneous group of stromal cells found in various tissues that is composed of cells with the developmental potential to generate bone, cartilage and adipose tissue (also historically known as mesenchymal stem cells). Mesenchymal stromal cells in the bone marrow are crucial constituents of the haematopoietic microenvironment, which is often termed the 'haematopoietic stem cell niche'.

Parabiosis

An experimental model system in which two animals (most often mice) are surgically joined to establish a common circulation.

Permissive model of lineage specification

This model proposes that upstream multipotent precursors produce downstream lineage-specific progenitors at a fixed rate that can then be stimulated upon need. Cytokines regulate the proliferation or apoptosis of cells that are already committed to a lineage due to intrinsic developmental programmes.

Instructive model of lineage specification

This model proposes that upstream multipotent precursors produce defined lineage-specific progenitors upon specific need. Cytokines trigger a molecular programme in stem and progenitor cells that induces differentiation to a specific lineage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manz, M., Boettcher, S. Emergency granulopoiesis. Nat Rev Immunol 14, 302–314 (2014). https://doi.org/10.1038/nri3660

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing