Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice

Key Points

  • Developing CD4+CD8+ double positive (DP) thymocytes differentiate either into CD4+ helper or CD8+ cytotoxic T cells, depending on the MHC-restriction specificity of their T-cell receptor (TCR).

  • Classical models of CD4/CD8-lineage choice share the perspective that lineage choice occurs in thymocytes that express both Cd4 and Cd8 at the mRNA level (that is, transcriptionally Cd4+Cd8+) and results in the termination of transcription of one or the other co-receptor molecule as a consequence of the same TCR signals that mediate positive selection.

  • Classical models are either stochastic or instructive, and experimental testing of these models has been extensive. However, crucial presumptions made by each classical model (stochastic selection, strength-of-signal or duration-of-signal models) have been experimentally contradicted.

  • The kinetic signalling model of CD4/CD8-lineage choice differs in various respects from all classical models, as it postulates that TCR-signalled DP thymocytes first transiently terminate Cd8 gene expression and convert into Cd4+Cd8 intermediate cells in which CD4/CD8-lineage choices are then made. Thus, positive selection and lineage choice are sequential events.

  • CD4/CD8-lineage choice is determined in Cd4+Cd8 intermediate cells by whether TCR-mediated positive selection signalling persists or ceases in the absence of Cd8 gene expression. Persistent TCR signalling drives CD4+ T-cell development, whereas disrupted TCR signalling permits signalling by interleukin-7 and other common cytokine-receptor γ-chain cytokines that drive CD8+ T-cell development.

  • Recent advances in the molecular events that occur during CD4/CD8-lineage choice have identified a series of nuclear factors, including Th-POK (T-helper-inducing POZ/Kruppel-like factor), RUNX3 (runt-related transcription factor 3), TOX (thymus high-mobility group box protein) and GATA3 (GATA-binding protein 3), that are crucially involved in T-cell-lineage-fate determination.

  • It is possible to integrate the activity of these nuclear factors into the kinetic signalling model to achieve an integrated picture of CD4/CD8-lineage choice on both a cellular and molecular level.

Abstract

Following successful gene rearrangement at αβ T-cell receptor (TCR) loci, developing thymocytes express both CD4 and CD8 co-receptors and undergo a life-or-death selection event, which is known as positive selection, to identify cells that express TCRs with potentially useful ligand specificities. Positively selected thymocytes must then differentiate into either CD4+ helper T cells or CD8+ cytotoxic T cells, a crucial decision known as CD4/CD8-lineage choice. In this Review, we summarize recent advances in our understanding of the cellular and molecular events involved in lineage-fate decision and discuss them in the context of the major models of CD4/CD8-lineage choice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of T-cell development in the thymus.
Figure 2: Classical models of CD4/CD8-lineage choice.
Figure 3: The kinetic signalling model of CD4/CD8-lineage choice.
Figure 4: Lineage-fate mapping according to the kinetic signalling model of CD4/CD8-lineage choice.
Figure 5: Regulation of Cd4 and Cd8 gene expression.
Figure 6: Environmental cues and nuclear factors that influence CD4/CD8-lineage choice.

Similar content being viewed by others

References

  1. Chong, M. M. et al. Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependent CD8+ T cell differentiation. Immunity 18, 475–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, Q. et al. Cytokine signal transduction is suppressed in preselection double-positive thymocytes and restored by positive selection. J. Exp. Med. 203, 165–175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Doyle, C. & Strominger, J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330, 256–259 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Norment, A. M., Salter, R. D., Parham, P., Engelhard, V. H. & Littman, D. R. Cell–cell adhesion mediated by CD8 and MHC class I molecules. Nature 336, 79–81 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Shaw, A. S. et al. The lck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino-terminal domain. Cell 59, 627–636 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Turner, J. M. et al. Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell 60, 755–765 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Veillette, A., Bookman, M. A., Horak, E. M., Samelson, L. E. & Bolen, J. B. Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature 338, 257–259 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Veillette, A., Zuniga-Pflucker, J. C., Bolen, J. B. & Kruisbeek, A. M. Engagement of CD4 and CD8 expressed on immature thymocytes induces activation of intracellular tyrosine phosphorylation pathways. J. Exp. Med. 170, 1671–1680 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Teh, H. S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 (1988). This is the first report of a TCR-transgenic mouse and shows that CD4/CD8-lineage choice in the thymus is dictated by the MHC-restriction specificity of the positively selecting TCR.

    Article  CAS  PubMed  Google Scholar 

  10. Janeway, C. A. Jr. T-cell development. Accessories or coreceptors? Nature 335, 208–210 (1988).

    Article  PubMed  Google Scholar 

  11. Chan, S. H., Cosgrove, D., Waltzinger, C., Benoist, C. & Mathis, D. Another view of the selective model of thymocyte selection. Cell 73, 225–236 (1993). This study provides support for the stochastic selection model by showing that MHC class II-deficient mice contain CD4+CD8low thymocytes, which were thought to be MHC class I-restricted cells that were short-lived and that had randomly made an incorrect CD4-lineage choice.

    Article  CAS  PubMed  Google Scholar 

  12. Davis, C. B., Killeen, N., Crooks, M. E., Raulet, D. & Littman, D. R. Evidence for a stochastic mechanism in the differentiation of mature subsets of T lymphocytes. Cell 73, 237–247 (1993). This study also provides support for the stochastic selection model through one of the first co-receptor rescue experiments in which constitutive expression of transgenic co-receptor proteins promoted the differentiation of positively selected thymocytes into mature T cells of the inappropriate lineage.

    Article  CAS  PubMed  Google Scholar 

  13. Itano, A., Kioussis, D. & Robey, E. Stochastic component to development of class I major histocompatibility complex-specific T cells. Proc. Natl Acad. Sci. USA 91, 220–224 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leung, R. K. et al. Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nature Immunol. 2, 1167–1173 (2001).

    Article  CAS  Google Scholar 

  15. Robey, E., Itano, A., Fanslow, W. C. & Fowlkes, B. J. Constitutive CD8 expression allows inefficient maturation of CD4+ helper T cells in class II major histocompatibility complex mutant mice. J. Exp. Med. 179, 1997–2004 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Chan, S. H., Waltzinger, C., Baron, A., Benoist, C. & Mathis, D. Role of coreceptors in positive selection and lineage commitment. Embo J. 13, 4482–4489 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baron, A., Hafen, K. & von Boehmer, H. A human CD4 transgene rescues CD4-CD8+ cells in β2-microglobulin-deficient mice. Eur. J. Immunol. 24, 1933–1936 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Itano, A. & Robey, E. Highly efficient selection of CD4 and CD8 lineage thymocytes supports an instructive model of lineage commitment. Immunity 12, 383–389 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Keefe, R., Dave, V., Allman, D., Wiest, D. & Kappes, D. J. Regulation of lineage commitment distinct from positive selection. Science 286, 1149–1153 (1999). This study characterizes a spontaneously arising mutant mouse strain that lacks helper T cells (referred to as helper deficient mice) and provides the first evidence that positive selection and CD4/CD8-lineage choice are sequential, temporally distinct events.

    Article  CAS  PubMed  Google Scholar 

  20. Sarafova, S. D. et al. Modulation of coreceptor transcription during positive selection dictates lineage fate independently of TCR/coreceptor specificity. Immunity 23, 75–87 (2005). Using an elaborate in vivo model in which CD4 expression is regulated by Cd8 transcriptional control elements, this study shows that lineage commitment is determined by the kinetics of co-receptor transcription during positive selection signalling and not by the identity or signalling strength of the co-receptor proteins themselves.

    Article  CAS  PubMed  Google Scholar 

  21. Seong, R. H., Chamberlain, J. W. & Parnes, J. R. Signal for T-cell differentiation to a CD4 cell lineage is delivered by CD4 transmembrane region and/or cytoplasmic tail. Nature 356, 718–720 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Itano, A. et al. The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. J. Exp. Med. 183, 731–741 (1996). This study proposes the strength-of-signal instructional model and provides the first experimental support for this model.

    Article  CAS  PubMed  Google Scholar 

  23. Wiest, D. L. et al. Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules. J. Exp. Med. 178, 1701–1712 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Hernandez-Hoyos, G., Sohn, S. J., Rothenberg, E. V. & Alberola-Ila, J. Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 12, 313–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Sohn, S. J., Forbush, K. A., Pan, X. C. & Perlmutter, R. M. Activated p56lck directs maturation of both CD4 and CD8 single-positive thymocytes. J. Immunol. 166, 2209–2217 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Schmedt, C. & Tarakhovsky, A. Autonomous maturation of α/β T lineage cells in the absence of COOH-terminal Src kinase (Csk). J. Exp. Med. 193, 815–826 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Broussard, C. et al. Altered development of CD8+ T cell lineages in mice deficient for the Tec kinases Itk and Rlk. Immunity 25, 93–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Liao, X. C. & Littman, D. R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity 3, 757–769 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Schaeffer, E. M. et al. Tec family kinases modulate thresholds for thymocyte development and selection. J. Exp. Med. 192, 987–1000 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bommhardt, U., Basson, M. A., Krummrei, U. & Zamoyska, R. Activation of the extracellular signal-related kinase/mitogen-activated protein kinase pathway discriminates CD4 versus CD8 lineage commitment in the thymus. J. Immunol. 163, 715–722 (1999).

    CAS  PubMed  Google Scholar 

  31. Fischer, A. M., Katayama, C. D., Pages, G., Pouyssegur, J. & Hedrick, S. M. The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23, 431–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Sharp, L. L., Schwarz, D. A., Bott, C. M., Marshall, C. J. & Hedrick, S. M. The influence of the MAPK pathway on T cell lineage commitment. Immunity 7, 609–618 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Wilkinson, B. & Kaye, J. Requirement for sustained MAPK signaling in both CD4 and CD8 lineage commitment: a threshold model. Cell. Immunol. 211, 86–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Love, P. E., Lee, J. & Shores, E. W. Critical relationship between TCR signaling potential and TCR affinity during thymocyte selection. J. Immunol. 165, 3080–3087 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Holst, J. et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nature Immunol. 9, 658–666 (2008).

    Article  CAS  Google Scholar 

  36. Bosselut, R., Feigenbaum, L., Sharrow, S. O. & Singer, A. Strength of signaling by CD4 and CD8 coreceptor tails determines the number but not the lineage direction of positively selected thymocytes. Immunity 14, 483–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Erman, B. et al. Coreceptor signal strength regulates positive selection but does not determine CD4/CD8 lineage choice in a physiologic in vivo model. J. Immunol. 177, 6613–6625 (2006). This report uses gene knock-in technology to engineer the endogenous Cd8a gene so that it encodes stronger-signalling CD8–CD4 chimeric co-receptor proteins. It shows that the strength of co-receptor signalling does not alter CD4/CD8-lineage choice but instead has a quantitative effect on the number of DP thymocytes that are positively selected to differentiate into mature T cells.

    Article  CAS  PubMed  Google Scholar 

  38. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R. N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000). This is the original study that introduces the kinetic signalling model and describes results that contradict classical presumptions of CD4/CD8-lineage choice.

    Article  CAS  PubMed  Google Scholar 

  40. Singer, A. New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr. Opin. Immunol. 14, 207–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Lundberg, K., Heath, W., Kontgen, F., Carbone, F. R. & Shortman, K. Intermediate steps in positive selection: differentiation of CD4+8int TCRint thymocytes into CD48+TCRhi thymocytes. J. Exp. Med. 181, 1643–1651 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki, H., Punt, J. A., Granger, L. G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425 (1995). Published simultaneously with reference 41, these reports identify CD4+CD8low thymocytes as precursors of both CD4+ and CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  43. Aliahmad, P. & Kaye, J. Commitment issues: linking positive selection signals and lineage diversification in the thymus. Immunol. Rev. 209, 253–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kappes, D. J., He, X. & He, X. CD4-CD8 lineage commitment: an inside view. Nature Immunol. 6, 761–766 (2005).

    Article  CAS  Google Scholar 

  45. Kappes, D. J., He, X. & He, X. Role of the transcription factor Th-POK in CD4:CD8 lineage commitment. Immunol. Rev. 209, 237–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lucas, B. & Germain, R. N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. He, X. et al. CD4-CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity 28, 346–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Bosselut, R., Guinter, T. I., Sharrow, S. O. & Singer, A. Unraveling a revealing paradox: why major histocompatibility complex I-signaled thymocytes “paradoxically” appear as CD4+8lo transitional cells during positive selection of CD8+ T cells. J. Exp. Med. 197, 1709–1719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barthlott, T., Kohler, H. & Eichmann, K. Asynchronous coreceptor downregulation after positive thymic selection: prolonged maintenance of the double positive state in CD8 lineage differentiation due to sustained biosynthesis of the CD4 coreceptor. J. Exp. Med. 185, 357–362 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singer, A. & Bosselut, R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv. Immunol. 83, 91–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Yu, Q., Erman, B., Bhandoola, A., Sharrow, S. O. & Singer, A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+ T cells. J. Exp. Med. 197, 475–487 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Noguchi, M. et al. Functional cleavage of the common cytokine receptor γ chain (γc) by calpain. Proc. Natl Acad. Sci. USA 94, 11534–11539 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park, J. H. et al. 'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nature Immunol. 8, 1049–1059 (2007).

    Article  CAS  Google Scholar 

  54. Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A. & Thompson, C. B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Wofford, J. A., Wieman, H. L., Jacobs, S. R., Zhao, Y. & Rathmell, J. C. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111, 2101–2111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Catlett, I. M. & Hedrick, S. M. Suppressor of cytokine signaling 1 is required for the differentiation of CD4+ T cells. Nature Immunol. 6, 715–721 (2005).

    Article  CAS  Google Scholar 

  57. Yucel, R., Karsunky, H., Klein-Hitpass, L. & Moroy, T. The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus. J. Exp. Med. 197, 831–844 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ellmeier, W., Sawada, S. & Littman, D. R. The regulation of CD4 and CD8 coreceptor gene expression during T cell development. Annu. Rev. Immunol. 17, 523–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Kioussis, D. & Ellmeier, W. Chromatin and CD4, CD8α and CD8β gene expression during thymic differentiation. Nature Rev. Immunol. 2, 909–919 (2002).

    Article  CAS  Google Scholar 

  60. Sawada, S., Scarborough, J. D., Killeen, N. & Littman, D. R. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77, 917–929 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Siu, G., Wurster, A. L., Duncan, D. D., Soliman, T. M. & Hedrick, S. M. A transcriptional silencer controls the developmental expression of the CD4 gene. EMBO J. 13, 3570–3579 (1994). Together with reference 60, this report describes the identification of a Cd4 silencer element that transcriptionally suppresses CD4 expression in CD4 thymocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ellmeier, W., Sunshine, M. J., Losos, K. & Littman, D. R. Multiple developmental stage-specific enhancers regulate CD8 expression in developing thymocytes and in thymus-independent T cells. Immunity 9, 485–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Hostert, A. et al. Hierarchical interactions of control elements determine CD8α gene expression in subsets of thymocytes and peripheral T cells. Immunity 9, 497–508 (1998). Together with reference 62, this report identifies individual enhancer elements that are responsible for the developmental and stage-specific transcription of the Cd8a gene during T-cell development.

    Article  CAS  PubMed  Google Scholar 

  64. Ellmeier, W., Sunshine, M. J., Losos, K., Hatam, F. & Littman, D. R. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 7, 537–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Hostert, A. et al. A CD8 genomic fragment that directs subset-specific expression of CD8 in transgenic mice. J. Immunol. 158, 4270–4281 (1997).

    CAS  PubMed  Google Scholar 

  66. Feik, N. et al. Functional and molecular analysis of the double-positive stage-specific CD8 enhancer E8III during thymocyte development. J. Immunol. 174, 1513–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Hostert, A. et al. A region in the CD8 gene locus that directs expression to the mature CD8 T cell subset in transgenic mice. Immunity 7, 525–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Yao, Z. et al. Stat5a/b are essential for normal lymphoid development and differentiation. Proc. Natl Acad. Sci. USA 103, 1000–1005 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo. Nature Immunol. 5, 280–288 (2004).

    Article  CAS  Google Scholar 

  70. Kadlecek, T. A. et al. Differential requirements for ZAP-70 in TCR signaling and T cell development. J. Immunol. 161, 4688–4694 (1998).

    CAS  PubMed  Google Scholar 

  71. Liu, X. et al. Restricting Zap70 expression to CD4+CD8+ thymocytes reveals a T cell receptor-dependent proofreading mechanism controlling the completion of positive selection. J. Exp. Med. 197, 363–373 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Harker, N. et al. The CD8α gene locus is regulated by the Ikaros family of proteins. Mol. Cell 10, 1403–1415 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Urban, J. A. & Winandy, S. Ikaros null mice display defects in T cell selection and CD4 versus CD8 lineage decisions. J. Immunol. 173, 4470–4478 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Naito, T., Gomez- Del Arco, P., Williams, C. J. & Georgopoulos, K. Antagonistic interactions between Ikaros and the chromatin remodeler Mi-2β determine silencer activity and Cd4 gene expression. Immunity 27, 723–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Williams, C. J. et al. The chromatin remodeler Mi-2β is required for CD4 expression and T cell development. Immunity 20, 719–733 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Chi, T. H. et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418, 195–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008). This study documents that, in the absence of the HMG box protein TOX, the development of CD4-lineage T cells is blocked, thereby identifying TOX as one of the nuclear factors that are required for CD4-lineage choice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bosselut, R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nature Rev. Immunol. 4, 529–540 (2004).

    Article  CAS  Google Scholar 

  80. Egawa, T., Tillman, R. E., Naoe, Y., Taniuchi, I. & Littman, D. R. The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J. Exp. Med. 204, 1945–1957 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005). This study uses positional cloning to identify a point mutation in Th-POK as being responsible for the absence of CD4+ T cells in HD mice. Reciprocally, transgene-encoded Th-POK proteins are shown to redirect the differentiation of MHC class I-selected thymocytes into CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  82. Hernandez-Hoyos, G., Anderson, M. K., Wang, C., Rothenberg, E. V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nature Immunol. 6, 373–381 (2005). Together with reference 81, this study identifies Th-POK as a CD4-lineage-determining factor and as the putative CD4-lineage master gene.

    Article  CAS  Google Scholar 

  86. Taniuchi, I., Ellmeier, W. & Littman, D. R. The CD4/CD8 lineage choice: new insights into epigenetic regulation during T cell development. Adv. Immunol. 83, 55–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Grueter, B. et al. Runx3 regulates integrin αE/CD103 and CD4 expression during development of CD4/CD8+ T cells. J. Immunol. 175, 1694–1705 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Aliahmad, P. et al. TOX provides a link between calcineurin activation and CD8 lineage commitment. J. Exp. Med. 199, 1089–1099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wilkinson, B. et al. TOX: an HMG box protein implicated in the regulation of thymocyte selection. Nature Immunol. 3, 272–280 (2002).

    Article  CAS  Google Scholar 

  90. Hendriks, R. W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Nawijn, M. C. et al. Enforced expression of GATA-3 during T cell development inhibits maturation of CD8 single-positive cells and induces thymic lymphoma in transgenic mice. J. Immunol. 167, 715–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Galera, P., Musso, M., Ducy, P. & Karsenty, G. c-Krox, a transcriptional regulator of type I collagen gene expression, is preferentially expressed in skin. Proc. Natl Acad. Sci. USA 91, 9372–9376 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dave, V. P., Allman, D., Keefe, R., Hardy, R. R. & Kappes, D. J. HD mice: a novel mouse mutant with a specific defect in the generation of CD4+ T cells. Proc. Natl Acad. Sci. USA 95, 8187–8192 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jenkinson, S. R. et al. Expression of the transcription factor cKrox in peripheral CD8 T cells reveals substantial postthymic plasticity in CD4-CD8 lineage differentiation. J. Exp. Med. 204, 267–272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002). This report identifies RUNX-family transcription factors as crucial mediators of Cd4 gene repression.

    Article  CAS  PubMed  Google Scholar 

  96. Levanon, D. & Groner, Y. Structure and regulated expression of mammalian RUNX genes. Oncogene 23, 4211–4219 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl Acad. Sci. USA 100, 7731–7736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kohu, K. et al. Overexpression of the Runx3 transcription factor increases the proportion of mature thymocytes of the CD8 single-positive lineage. J. Immunol. 174, 2627–2636 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Liu, X., Taylor, B. J., Sun, G. & Bosselut, R. Analyzing expression of perforin, Runx3, and Thpok genes during positive selection reveals activation of CD8-differentiation programs by MHC II-signaled thymocytes. J. Immunol. 175, 4465–4474 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Schilham, M. W. & Clevers, H. HMG box containing transcription factors in lymphocyte differentiation. Semin. Immunol. 10, 127–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Stros, M., Launholt, D. & Grasser, K. D. The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell. Mol. Life Sci. 64, 2590–2606 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Hedrick, S. M. Thymus lineage commitment: a single switch. Immunity 28, 297–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Pai, S. Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Huseby, E. S. et al. How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Zerrahn, J., Held, W. & Raulet, D. H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Van Laethem, F. et al. Deletion of CD4 and CD8 coreceptors permits generation of αβT cells that recognize antigens independently of the MHC. Immunity 27, 735–750 (2007). This study shows that TCRs that engage non-MHC ligands in the thymus cannot access co-receptor associated LCK and so cannot transduce intracellular signals that would rescue thymocytes from death by neglect.

    Article  CAS  PubMed  Google Scholar 

  107. Wiest, D. L., Ashe, J. M., Abe, R., Bolen, J. B. & Singer, A. TCR activation of ZAP70 is impaired in CD4+CD8+ thymocytes as a consequence of intrathymic interactions that diminish available p56lck. Immunity 4, 495–504 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Haughn, L. et al. Association of tyrosine kinase p56lck with CD4 inhibits the induction of growth through the αβ T-cell receptor. Nature 358, 328–331 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Yu, M. et al. Nucleoprotein structure of the CD4 locus: implications for the mechanisms underlying CD4 regulation during T cell development. Proc. Natl Acad. Sci. USA 105, 3873–3878 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bilic, I. et al. Negative regulation of CD8 expression via Cd8 enhancer-mediated recruitment of the zinc finger protein MAZR. Nature Immunol. 7, 392–400 (2006).

    Article  CAS  Google Scholar 

  111. Adlam, M., Duncan, D. D., Ng, D. K. & Siu, G. Positive selection induces CD4 promoter and enhancer function. Int. Immunol. 9, 877–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Uematsu, Y., Donda, A. & De Libero, G. Thymocytes control the CD4 gene differently from mature T lymphocytes. Int. Immunol. 9, 179–187 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Wurster, A. L., Siu, G., Leiden, J. M. & Hedrick, S. M. Elf-1 binds to a critical element in a second CD4 enhancer. Mol. Cell Biol. 14, 6452–6463 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zou, Y. R. et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nature Genet. 29, 332–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Allen, R. D. 3rd, Kim, H. K., Sarafova, S. D. & Siu, G. Negative regulation of CD4 gene expression by a HES-1-c-Myb complex. Mol. Cell. Biol. 21, 3071–3082 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim, H. K. & Siu, G. The notch pathway intermediate HES-1 silences CD4 gene expression. Mol. Cell. Biol. 18, 7166–7175 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wildt, K. F. et al. The transcription factor Zbtb7b promotes CD4 expression by antagonizing Runx-mediated activation of the CD4 silencer. J. Immunol. 179, 4405–4414 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our many colleagues who contributed to our current understanding of CD4/CD8 lineage-fate decisions in the thymus that we were unable to adequately acknowledge and reference in this Review. We are grateful to B. Erman, S. Sarafova, R. Bosselut and N. Taylor for many discussions and for their critical reading of the manuscript. This research was supported by the Intramural Research Program of the US National Institutes of Health, National Cancer Institute, Center for Cancer Research, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Singer.

Related links

Related links

FURTHER INFORMATION

Alfred Singer's homepage

Glossary

Programmed cell death

A common form of cell death that is also known as apoptosis. Many physiological and developmental stimuli cause apoptosis, and this mechanism is frequently used to delete unwanted, superfluous or potentially harmful cells. Apoptosis involves cell shrinkage, chromatin condensation, plasma-membrane blebbing and DNA fragmentation. Eventually, the cell breaks up into many membrane-bound apoptotic bodies, which are phagocytosed by neighbouring cells.

HY TCR

An MHC class I-restricted T-cell receptor (TCR) that recognizes an antigenic complex composed of H2–Db and the Y-chromosome-encoded male antigen (HY). Mice expressing an HY TCR transgene were the first TCR-transgenic mice ever produced. In female mice, thymocytes expressing this clonotypic TCR transgene are positively selected and differentiate into CD8+ T cells, whereas in male mice thymocytes expressing the same TCRs are negatively selected.

Immunoreceptor tyrosine-based activation motif

A short peptide motif that contains tyrosine residues, is found in the cytoplasmic tail of several signalling adaptor proteins and is necessary to recruit proteins that are involved in triggering activating signalling proteins. The consensus sequence is Tyr-X-X-(Leu/Ile)-X6–8-Tyr-X-X-(Leu/Ile), in which X denotes any amino acid.

Common cytokine-receptor γ-chain

A shared cytokine receptor chain for a group of short-chained, four-helical bundle interleukins, including interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15 and IL-21.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, A., Adoro, S. & Park, JH. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol 8, 788–801 (2008). https://doi.org/10.1038/nri2416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing