Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation

Key Points

  • Hosts have evolved strategies to detect and respond rapidly to invading microorganisms and host-cell damage or 'danger signals'. The caspase-1 inflammasome is a dynamic complex in which specific NOD-like receptors (NLRs) and adaptor molecules are brought into play, depending on the nature of the primary trigger.

  • ASC (apoptosis-associated speck-like protein containing a CARD) has a central role in the inflammasome. Through homotypic protein–protein interactions with its own CARD (caspase-recruitment domain) and PYD (pyrin domain), ASC is thought to act as a direct bridge between the sensor NALPs (NACHT-, LRR- and pyrin-domain-containing proteins) and the downstream effector caspase-1.

  • The two-signal activation model is derived from studies of the treatment of cultured macrophages with pathogen-associated molecular patterns, which, in the absence of ATP, are insufficient to activate the inflammasome complex. However, infection with bacterial pathogens both in vitro and in vivo does not require ATP to trigger the inflammasome.

  • NALP3 is involved in sensing toxins, 'danger signals' such as gout crystals, Staphylococcus aureus, Listeria monocytogenes, bacterial RNA and trinitrophenylchloride.

  • IPAF (ICE-protease activating factor) is involved in sensing various intracellular bacterial pathogens, such as Salmonella typhimurium, Shigella flexneri and Legionella pneumophila. Flagellin might be one common pathogen-associated molecule that is recognized by IPAF and/or NAIP5 (neuronal apoptosis inhibitor protein 5).

  • ASC is required for the inflammasome recognition of Francisella tularensis.

Abstract

The NOD-like receptors have important roles in innate immunity as intracellular sensors of microbial components and cell injury. It has been proposed that these cytosolic proteins regulate the cysteine protease caspase-1 within a multiprotein complex known as the 'inflammasome'. Activation of caspase-1 leads to the cleavage and activation of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and IL-18, as well as host-cell death. The analysis of mice that are deficient in various inflammasome components has revealed that the inflammasome is a dynamic entity that is assembled from different adaptors in a stimulus-dependent manner. Here we review recent work on the activation of the inflammasome in response to various bacterial pathogens and tissue damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The combination of two distinct extracellular triggers is needed to induce the robust activation of the caspase-1 inflammasome and subsequent release of IL-1β.
Figure 2: Activation of the NALP3 inflammasome by bacterial and host-derived components.
Figure 3: Activation of the ASC or IPAF inflammasome by bacterial components.
Figure 4: Activation of inflammasomes.

Similar content being viewed by others

References

  1. Raskin, D. M., Seshadri, R., Pukatzki, S. U. & Mekalanos, J. J. Bacterial genomics and pathogen evolution. Cell 124, 703–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Pizarro-Cerda, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell 124, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  4. Strober, W., Murray, P. J., Kitani, A. & Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nature Rev. Immunol. 6, 9–20 (2006).

    Article  CAS  Google Scholar 

  5. Ting, J. P., Kastner, D. L. & Hoffman, H. M. CATERPILLERs, pyrin and hereditary immunological disorders. Nature Rev. Immunol. 6, 183–195 (2006).

    Article  CAS  Google Scholar 

  6. Inohara, N., Chamaillard, M., McDonald, C. & Nunez, G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kufer, T. A., Fritz, J. H. & Philpott, D. J. NACHT-LRR proteins (NLRs) in bacterial infection and immunity. Trends Microbiol. 13, 381–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

  9. Ren, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F. & Vance, R. E. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog. 2, e18 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nature Immunol. 7, 569–575 (2006).

    Article  CAS  Google Scholar 

  11. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006). References 10 and 11 provide evidence that caspase-1 is activated in response to flagellin that is secreted by the intracellular pathogen S. typhimurium in an IPAF-dependent manner.

    Article  CAS  Google Scholar 

  12. Philpott, D. J. & Girardin, S. E. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol. 41, 1099–1108 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-1β. Mol. Cell 10, 417–426 (2002). The first description of the caspase-1 inflammasome.

    Article  CAS  PubMed  Google Scholar 

  15. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006). Describes the role of caspase-1 in activating lipid metabolic pathways in fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  17. Tschopp, J., Irmler, M. & Thome, M. Inhibition of Fas death signals by FLIPs. Curr. Opin. Immunol. 10, 552–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Chu, Z. L. et al. A novel enhancer of the Apaf1 apoptosome involved in cytochrome c-dependent caspase activation and apoptosis. J. Biol. Chem. 276, 9239–9245 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Martinon, F. & Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 15 September 2006 (doi: 10.1038/sj.cdd.4402038).

  20. Sutterwala, F. S., Ogura, Y., Zamboni, D. S., Roy, C. R. & Flavell, R. A. NALP3: a key player in caspase-1 activation. J. Endotoxin Res. 12, 251–256 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Ogura, Y., Sutterwala, F. S. & Flavell, R. A. The inflammasome: first line of the immune response to cell stress. Cell 126, 659–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Drenth, J. P. & van der Meer, J. W. The inflammasome — a linebacker of innate defense. N. Engl. J. Med. 355, 730–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Franchi, L., McDonald, C., Kanneganti, T. D., Amer, A. & Nunez, G. Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense. J. Immunol. 177, 3507–3513 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Masumoto, J. et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J. Biol. Chem. 274, 33835–33838 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Conway, K. E. et al. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res. 60, 6236–6242 (2000).

    CAS  PubMed  Google Scholar 

  26. Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Dowds, T. A., Masumoto, J., Zhu, L., Inohara, N. & Nunez, G. Cryopyrin-induced interleukin 1β secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J. Biol. Chem. 279, 21924–21928 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Yu, J. W. et al. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ. 13, 236–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nature Genet. 29, 301–305 (2001). Describes the first evidence for an association between NALP3/cryopyrin variants and Muckle–Wells syndrome.

    Article  CAS  PubMed  Google Scholar 

  31. McDermott, M. F. & Aksentijevich, I. The autoinflammatory syndromes. Curr. Opin. Allergy Clin. Immunol. 2, 511–516 (2002).

    Article  PubMed  Google Scholar 

  32. Feldmann, J. et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am. J. Hum. Genet. 71, 198–203 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006). Describes NALP3/cyropyrin deficient mice and its requirement for inflammsome activation in response to toxins, ATP, S. aureus , and L. monocytogenes.

    Article  CAS  PubMed  Google Scholar 

  34. Kanneganti, T. D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006). Describes NALP3-deficient mice and its requirement for inflammasome activation in response to bacterial RNA and small antiviral compounds.

    Article  CAS  PubMed  Google Scholar 

  35. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006). Describes NALP3 involvement in inflammasome activation in response to danger signals such as uric acid crystals.

    Article  CAS  PubMed  Google Scholar 

  36. Sutterwala, F. S. et al. Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Geddes, B. J. et al. Human CARD12 is a novel CED4/Apaf-1 family member that induces apoptosis. Biochem. Biophys. Res. Commun. 284, 77–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Poyet, J. L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309–28313 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Dinarello, C. A. Biologic basis for interleukin-1 in disease. Blood 87, 2095–2147 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Messud-Petit, F. et al. Serp2, an inhibitor of the interleukin-1β-converting enzyme, is critical in the pathobiology of myxoma virus. J. Virol. 72, 7830–7839 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnston, J. B. et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23, 587–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004). Describes the role of ASC in response to ATP and of ASC and IPAF in response to the intracellular pathogen S. typhimurium.

    Article  CAS  PubMed  Google Scholar 

  43. Thornberry, N. A. & Molineaux, S. M. Interleukin-1β converting enzyme: a novel cysteine protease required for IL-1β production and implicated in programmed cell death. Protein Sci. 4, 3–12 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burns, K., Martinon, F. & Tschopp, J. New insights into the mechanism of IL-1β maturation. Curr. Opin. Immunol. 15, 26–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Hogquist, K. A., Nett, M. A., Unanue, E. R. & Chaplin, D. D. Interleukin 1 is processed and released during apoptosis. Proc. Natl Acad. Sci. USA 88, 8485–8489 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Solle, M. et al. Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem. 276, 125–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Di Virgilio, F., Baricordi, O. R., Romagnoli, R. & Baraldi, P. G. Leukocyte P2 receptors: a novel target for anti-inflammatory and anti-tumor therapy. Curr. Drug Targets Cardiovasc. Haematol. Disord. 5, 85–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Perregaux, D. & Gabel, C. A. Interleukin-1β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem. 269, 15195–15203 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Walev, I., Reske, K., Palmer, M., Valeva, A. & Bhakdi, S. Potassium-inhibited processing of IL-1β in human monocytes. EMBO J. 14, 1607–1614 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Walev, I. et al. Potassium regulates IL-1β processing via calcium-independent phospholipase A2 . J. Immunol. 164, 5120–5124 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Andrei, C. et al. Phospholipases C and A2 control lysosome-mediated IL-1β secretion: Implications for inflammatory processes. Proc. Natl Acad. Sci. USA 101, 9745–9750 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamamoto, M. et al. ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes Cells 9, 1055–1067 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Ozoren, N. et al. Distinct roles of TLR2 and the adaptor ASC in IL-1β/IL-18 secretion in response to Listeria monocytogenes. J. Immunol. 176, 4337–4342 (2006).

    Article  PubMed  Google Scholar 

  57. Chen, Y., Smith, M. R., Thirumalai, K. & Zychlinsky, A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15, 3853–3860 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl Acad. Sci. USA 96, 2396–2401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hilbi, H. et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273, 32895–32900 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Sansonetti, P. J. et al. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12, 581–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Lara-Tejero, M. et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Raupach, B., Peuschel, S. K., Monack, D. M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74 (2006).

  63. Galan, J. E. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol. 17, 53–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Goosney, D. L., Knoechel, D. G. & Finlay, B. B. Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation. Emerg. Infect. Dis. 5, 216–223 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, S. H. & Galan, J. E. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Zamboni, D. S. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nature Immunol. 7, 318–325 (2006). Describes the requirement of NAIP5/Birc1e and IPAF for recognition of the intracellular pathogen L. pneumophila and activation of the inflammasome.

    Article  CAS  Google Scholar 

  68. Yamamoto, Y., Klein, T. W., Newton, C. A., Widen, R. & Friedman, H. Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect. Immun. 56, 370–375 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nature Genet. 33, 55–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Wright, E. K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13, 27–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Miller, L. K. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9, 323–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Damiano, J. S., Oliveira, V., Welsh, K. & Reed, J. C. Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochem. J. 381, 213–219 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Molofsky, A. B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med. 203, 1093–1104 (2006). References 9 and 73 provide evidence that caspase-1 is activated in response to flagellin that is secreted by the intracellular pathogen L. pneumophila.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roy, D. et al. A process for controlling intracellular bacterial infections induced by membrane injury. Science 304, 1515–1518 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Mariathasan, S., Weiss, D. S., Dixit, V. M. & Monack, D. M. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 202, 1043–1049 (2005). Describes the role of ASC in activating the inflammasome in response to the intracellular pathogen F. tularensis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gavrilin, M. A. et al. Internalization and phagosome escape required for Francisella to induce human monocyte IL-1β processing and release. Proc. Natl Acad. Sci. USA 103, 141–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Grenier, J. M. et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-κB and caspase-1. FEBS Lett. 530, 73–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, L. et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-κB and caspase-1-dependent cytokine processing. J. Biol. Chem. 277, 29874–29880 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genet. 38, 240–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Annand, R. R. et al. Caspase-1 (interleukin-1β-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9. Biochem. J. 342, 655–665 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saleh, M. et al. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440, 1064–1068 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Humke, E. W., Shriver, S. K., Starovasnik, M. A., Fairbrother, W. J. & Dixit, V. M. ICEBERG: a novel inhibitor of interleukin-1β generation. Cell 103, 99–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Druilhe, A., Srinivasula, S. M., Razmara, M., Ahmad, M. & Alnemri, E. S. Regulation of IL-1β generation by pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ. 8, 649–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, S. H., Stehlik, C. & Reed, J. C. COP, a caspase recruitment domain-containing protein and inhibitor of caspase-1 activation processing. J. Biol. Chem. 276, 34495–34500 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Razmara, M. et al. CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J. Biol. Chem. 277, 13952–13958 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Lamkanfi, M. et al. INCA, a novel human caspase recruitment domain protein that inhibits interleukin-1β generation. J. Biol. Chem. 279, 51729–51738 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Aksentijevich, I. et al. Mutation and haplotype studies of familial Mediterranean fever reveal new ancestral relationships and evidence for a high carrier frequency with reduced penetrance in the Ashkenazi Jewish population. Am. J. Hum. Genet. 64, 949–962 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chae, J. J. et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol. Cell 11, 591–604 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Chae, J. J. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc. Natl Acad. Sci. USA 103, 9982–9987 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salvesen, G. S. & Dixit, V. M. Caspase activation: the induced-proximity model. Proc. Natl Acad. Sci. USA 96, 10964–10967 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks T. Henry, I. Brodsky, S. Falkow and D.S. Weiss for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

chronic infantile neurological cutaneous and articular syndrome

familial cold urticaria

Muckle–Wells syndrome

Glossary

Flagellin

A protein that arranges itself in a hollow cylinder to form the filament in bacterial flagellum, and is required for bacterial motility and often for virulence.

Zymogen

An inactive enzyme that requires biochemical change to become an active enzyme.

Endogenous pyrogen

A host molecule that can cause fever and is important for host immune defences.

Purinergic receptors

A family of plasma-membrane molecules that are involved in several known cellular functions, such as vascular reactivity, apoptosis and cytokine secretion.

Danger signals

Molecules that alert the innate immune system and trigger defensive immune responses, which are referred to as danger-associated molecular patterns (DAMPs), that indicate cellular stress.

Tularaemia

A zoonotic infectious disease, also called rabbit fever, that is caused by the bacterium Francisella tularensis and is often transmitted to humans by contact with animal tissues or from tick bites. Francisella tularensis is considered a potential bioterrorism agent owing to the low infectious dose (10 organisms) and its ability to be transmitted by aerosols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariathasan, S., Monack, D. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7, 31–40 (2007). https://doi.org/10.1038/nri1997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing