Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of immunity and inflammation by hypoxia in immunological niches

Key Points

  • Hypoxia and inflammation are frequently co-incidental microenvironmental features of sites of concentrated physiological or pathological immune activity.

  • Hypoxia activates hypoxia-inducible factor, which is a major regulator of multiple aspects of immune cell function. Consequently, hypoxia plays a key role in the regulation of immunity and inflammation.

  • The impact of hypoxia on immunity and inflammation is site-specific and cell type-specific.

  • Pharmacological hydroxylase inhibition, which activates hypoxia-sensitive pathways, is profoundly protective in multiple models of inflammation.

Abstract

Immunological niches are focal sites of immune activity that can have varying microenvironmental features. Hypoxia is a feature of physiological and pathological immunological niches. The impact of hypoxia on immunity and inflammation can vary depending on the microenvironment and immune processes occurring in a given niche. In physiological immunological niches, such as the bone marrow, lymphoid tissue, placenta and intestinal mucosa, physiological hypoxia controls innate and adaptive immunity by modulating immune cell proliferation, development and effector function, largely via transcriptional changes driven by hypoxia-inducible factor (HIF). By contrast, in pathological immunological niches, such as tumours and chronically inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction and disease development through immune cell dysregulation. Here, we differentiate between the effects of physiological and pathological hypoxia on immune cells and the consequences for immunity and inflammation in different immunological niches. Furthermore, we discuss the possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypoxia in physiological immunological niches.
Figure 2: Hypoxia in pathological immunological niches.
Figure 3: The HIF pathway.

Similar content being viewed by others

References

  1. Beerman, I., Luis, T. C., Singbrant, S., Lo Celso, C. & Méndez-Ferrer, S. The evolving view of the hematopoietic stem cell niche. Exp. Hematol. 50, 22–26 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shah, D. K. & Zúñiga-Pflücker, J. C. An overview of the intrathymic intricacies of T cell development. J. Immunol. 192, 4017–4023 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Campbell, E. L., Kao, D. J. & Colgan, S. P. Neutrophils and the inflammatory tissue microenvironment in the mucosa. Immunol. Rev. 273, 112–120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin, E. W., Karakasheva, T. A., Hicks, P. D., Bass, A. J. & Rustgi, A. K. The tumor microenvironment in esophageal cancer. Oncogene 35, 5337–5349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maru, Y. The lung metastatic niche. J. Mol. Med. (Berl.) 93, 1185–1192 (2015).

    Article  CAS  Google Scholar 

  6. Biswas, S. et al. Microenvironmental control of stem cell fate in intestinal homeostasis and disease. J. Pathol. 237, 135–145 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hallenbeck, J. M., Hansson, G. K. & Becker, K. J. Immunology of ischemic vascular disease: plaque to attack. Trends Immunol. 26, 550–556 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Gobert, A. P. & Wilson, K. T. The immune battle against Helicobacter pylori infection: NO offense. Trends Microbiol. 24, 366–376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quante, M. & Wang, T. C. Inflammation and stem cells in gastrointestinal carcinogenesis. Physiology (Bethesda) 23, 350–359 (2008).

    CAS  Google Scholar 

  10. Multhoff, G., Molls, M. & Radons, J. Chronic inflammation in cancer development. Front. Immunol. 2, 98 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Taylor, C. T., Doherty. G., Fallon, P. G. & Cummins, E. P. Hypoxia-dependent regulation of inflammatory pathways in immune cells. J. Clin. Invest. 126, 3716–3724 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cummins, E. P., Keogh, C. E., Crean, D. & Taylor, C. T. The role of HIF in immunity and inflammation. Mol. Aspects Med. 47–48, 24–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Scholz, C. C. & Taylor, C. T. Targeting the HIF pathway in inflammation and immunity. Curr. Opin. Pharmacol. 13, 646–653 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology (Bethesda) 25, 272–279 (2010).

    CAS  Google Scholar 

  15. Colgan, S. P. & Taylor, C. T. Hypoxia: an alarm signal during intestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 7, 281–287 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zheng, L., Kelly, C. J. & Colgan, S. P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 309, C350–C360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Semenza, G. L. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim. Biophys. Acta 1863, 382–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Semenza, G. L. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol. Med. 18, 534–543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Colgan, S. P., Campbell, E. L. & Kominsky, D. J. Hypoxia and mucosal inflammation. Annu. Rev. Pathol. 11, 77–100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loenarz, C. et al. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep. 12, 63–70 (2011). This paper identifies the highly evolutionarily conserved nature of the oxygen-sensing hydroxylase–HIF-dependent pathway in all metazoans.

    Article  CAS  PubMed  Google Scholar 

  22. Cummins, E. P. & Taylor, C. T. Hypoxia-responsive transcription factors. Pflugers Arch. 450, 363–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ratcliffe, P. J. Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J. Physiol. 591, 2027–2042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bunn, H. F. & Poyton, R. O. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839–885 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Taylor, C. T. & Moncada, S. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler. Thromb. Vasc. Biol. 30, 643–647 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Kaelin, W. G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Selfridge, A. C. et al. Hypercapnia suppresses the HIF-dependent adaptive response to hypoxia. J. Biol. Chem. 291, 11800–11808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hubbi, M. E. & Semenza, G. L. An essential role for chaperone-mediated autophagy in cell cycle progression. Autophagy 11, 850–851 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hubbi, M. E., Gilkes, D. M., Hu, H., Kshitiz, Ahmed, I. & Semenza, G. L. Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1α to promote cell-cycle progression. Proc. Natl Acad. Sci. USA 111, E3325–E3334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Intlekofer, A. M. et al. L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat. Chem. Biol. 13, 494–500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540, 236–241 (2016). This study demonstrates that the HIF pathway plays a key role in regulating antitumour activity in cytotoxic T lymphocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). This study demonstrates that succinate is an immunometabolite that regulates innate immunity through the HIF pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chandel, N. S. Mitochondrial regulation of oxygen sensing. Adv. Exp. Med. Biol. 661, 339–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Schödel, J., Mole, D. R. & Ratcliffe, P. J. Pan-genomic binding of hypoxia-inducible transcription factors. Biol. Chem. 394, 507–517 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284, 16767–16775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duan, C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am. J. Physiol. Cell Physiol. 310, C260–269 (2016).

    Article  PubMed  Google Scholar 

  40. Palazon, A., Goldrath, A. W., Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity 41, 518–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lenihan, C. R. & Taylor, C. T. The impact of hypoxia on cell death pathways. Biochem. Soc. Trans. 41, 657–663 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Haase, V. H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27, 41–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cummins, E. P. & Crean, D. Hypoxia and inflammatory bowel disease. Microbes Infect. 19, 210–221 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Glover, L. E. Lee, J. S. & Colgan, S. P. Oxygen metabolism and barrier regulation in the intestinal mucosa. J. Clin. Invest. 126, 3680–3688 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ramakrishnan, S. K. & Shah, Y. M. Role of intestinal HIF-2α in health and disease. Annu. Rev. Physiol. 78, 301–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Ivan, M. & Kaelin, W. G. Jr. The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. Mol. Cell 66, 772–779 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harris, A. J., Thompson, A. R., Whyte, M. K. & Walmsley, S. R. HIF-mediated innate immune responses: cell signaling and therapeutic implications. Hypoxia (Auckl.) 2, 47–58 (2014).

    Google Scholar 

  48. Lin, N. & Simon, M. C. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J. Clin. Invest. 126, 3661–3671 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mills, E. & O'Neill, L. A. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 24, 313–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Hammami, A., Charpentier, T., Smans, M. & Stäger, S. IRF-5-mediated inflammation limits CD8+ T Cell expansion by inducing HIF-1α and impairing dendritic cell functions during Leishmania infection. PLoS Pathog. 11, e1004938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wobben, R. et al. Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells. Biol. Chem. 394, 495–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Cho, S. H. et al. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537, 234–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ward, J. B. et al. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea. FASEB J. 25, 535–543 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Kelly, C. J. et al. Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol. 6, 1110–1118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Du, J. et al. pVHL negatively regulates antiviral signaling by targeting MAVS for proteasomal degradation. J. Immunol. 195, 1782–1790 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Stehle, F. et al. VHL-dependent alterations in the secretome of renal cell carcinoma: association with immune cell response? Oncotarget 6, 43420–43437 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Scholz, C. C. & Taylor, C. T. Hydroxylase-dependent regulation of the NF-κB pathway. Biol. Chem. 394, 479–493 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Corcoran, S. E. & O'Neill, L. A. HIF1α and metabolic reprogramming in inflammation. J. Clin. Invest. 126, 3699–3707 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. O'Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16553–16565 (2016).

  61. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994). This study identifies the control of glycolytic metabolism by the HIF pathway.

    CAS  PubMed  Google Scholar 

  62. Halligan, D. N., Murphy, S. J. & Taylor, C. T. The hypoxia-inducible factor (HIF) couples immunity with metabolism. Semin. Immunol. 28, 469–477 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Michiels, C., Tellier, C. & Feron, O. Cycling hypoxia: a key feature of the tumor microenvironment. Biochim. Biophys. Acta 1866, 76–86 (2016).

    CAS  PubMed  Google Scholar 

  64. Toffoli, S. & Michiels, C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J. 275, 2991–3002 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Ryan, S., Taylor, C. T. & McNicholas, W. T. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112, 2660–2667 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Taylor, C. T., Kent, B. D., Crinion, S. J., McNicholas, W. T. & Ryan, S. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression. Biochem. Biophys. Res. Commun. 447, 660–665 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. D'Ignazio, L., Bandarra, D. & Rocha, S. NF-κB and HIF crosstalk in immune responses. FEBS J. 283, 413–424 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Taylor, C. T. Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J. Physiol. 586, 4055–4059 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166, 288–298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shalapour, S. & Karin, M. Immunity, inflammation, and cancer: an eternal fight between good and evil. J. Clin. Invest. 125, 3347–3355 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Frede, S., Stockmann, C., Freitag, P. & Fandrey, J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem. J. 396, 517–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pérez, S., Taléns-Visconti, R., Rius-Pérez, S., Finamor, I. & Sastre, J. Redox signaling in the gastrointestinal tract. Free Radic. Biol. Med. 104, 75–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Masson, N. et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 13, 251–257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hagen, T., Taylor, C. T., Lam, F. & Moncada, S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302, 1975–1978 (2003). This study demonstrates that nitric oxide, a key mediator of inflammation, can regulate HIF stability through the control of intracellular oxygen availability.

    Article  CAS  PubMed  Google Scholar 

  76. Lohninger, L. et al. Hydrogen sulphide induces HIF-1α and Nrf2 in THP-1 macrophages. Biochimie 112, 187–195 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Flannigan, K. L. et al. Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxia-inducible factor-1α. FASEB J. 29, 1591–1602 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Wu, B., Teng, H., Yang, G., Wu, L. & Wang, R. Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1α. Br. J. Pharmacol. 167, 1492–1505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eliasson, P. & Jönsson, J. I. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell. Physiol. 222, 17–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mortensen, B. T. et al. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats. Br. J. Haematol. 102, 458–464 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Morikawa, T. & Takubo, K. Hypoxia regulates the hematopoietic stem cell niche. Pflugers Arch. 468, 13–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Forristal, C. E. et al. Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood 121, 759–769 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Takubo, K. et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 7, 391–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Forristal, C. E. & Levesque, J. P. Targeting the hypoxia-sensing pathway in clinical hematology. Stem Cells Transl Med. 3, 135–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Gezer, D., Vukovic, M., Soga, T., Pollard, P. J. & Kranc, K. R. Concise review: genetic dissection of hypoxia signaling pathways in normal and leukemic stem cells. Stem Cells 32, 1390–1397 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Annese, V., Navarro-Guerrero, E., Rodríguez-Prieto, I. & Pardal, R. Physiological plasticity of neural-crest-derived stem cells in the adult mammalian carotid body. Cell Rep. 19, 471–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mazumdar, J. et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nat. Cell Biol. 12, 1007–1013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 7, 380–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Krock, B. L. et al. The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability. Blood 125, 3263–3272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guitart, A. V. et al. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood 122, 1741–1745 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Abbott, R. K. et al. Germinal center hypoxia potentiates immunoglobulin class switch recombination. J. Immunol. 197, 4014–4020 (2016). References 52 and 92 demonstrate that physiological hypoxia in GCs plays a key role in B cell development.

    Article  CAS  PubMed  Google Scholar 

  93. Kumpel, B. M. & Manoussaka, M. S. Placental immunology and maternal alloimmune responses. Vox Sang. 102, 2–12 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Fryer, B. H. & Simon, M. C. Hypoxia, HIF and the placenta. Cell Cycle 5, 495–498 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Macklin, P. S., McAuliffe, J., Pugh, C. W. & Yamamoto, A. Hypoxia and HIF pathway in cancer and the placenta. Placenta 56, 8–13 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Yaghi, L. et al. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia response element located in exon 2. Oncotarget 7, 63690–63707 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Barsoum, I. B., Smallwood, C. A., Siemens, D. R. & Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74, 665–674 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Webster, W. S. & Abela, D. The effect of hypoxia in development. Birth Defects Res. C Embryo Today 81, 215–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Filiano, A. J., Gadani, S. P. & Kipnis, J. Interactions of innate and adaptive immunity in brain development and function. Brain Res. 1617, 18–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Dowling, D. J. & Levy, O. Ontogeny of early life immunity. Trends Immunol. 35, 299–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shepherd, A. P. Metabolic control of intestinal oxygenation and blood flow. Fed. Proc. 41, 2084–2089 (1982).

    CAS  PubMed  Google Scholar 

  102. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004). This study identifies a protective role for the HIF pathway in intestinal inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Evans, S. M. et al. Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res. 60, 2018–2024 (2000).

    CAS  PubMed  Google Scholar 

  104. Albenberg, L. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147, 1055–1063 (2014).

    Article  PubMed  Google Scholar 

  105. Goda, F. et al. In vivo oximetry using EPR and India ink. Magn. Reson. Med. 33, 237–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. He, G. et al. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc. Natl Acad. Sci. USA 96, 4586–4591 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Labiano, S., Palazon, A. & Melero, I. Immune response regulation in the tumor microenvironment by hypoxia. Semin. Oncol. 42, 378–386 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Unwith, S., Zhao, H., Hennah, L. & Ma, D. The potential role of HIF on tumour progression and dissemination. Int. J. Cancer. 136, 2491–2503 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Courtnay, R. et al. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol. Biol. Rep. 42, 841–851 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Miller, J. F. & Sadelain, M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell 27, 439–449 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Maus, M. V. et al. Adoptive immunotherapy for cancer or viruses. Annu. Rev. Immunol. 32, 189–225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Corzo, C. A. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Williams, A. E. & Chambers, R. C. The mercurial nature of neutrophils: still an enigma in ARDS? Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L217–L230 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, Z. et al. AMP-activated protein kinase and Glycogen Synthase Kinase 3β modulate the severity of sepsis-induced lung injury. Mol. Med. 21, 937–950 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Campbell, E. L. et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40, 66–77 (2014). This study identifies that the neutrophil oxidative burst is a key cause of mucosal hypoxia in inflammatory disease of the intestine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang, J. S. et al. Chronic granulomatous disease caused by a deficiency in p47(phox) mimicking Crohn's disease. Clin. Gastroenterol. Hepatol. 2, 690–695 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Manresa, M. C., Godson, C. & Taylor, C. T. Hypoxia-sensitive pathways in inflammation-driven fibrosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1369–R1380 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Devraj, G., Beerlage, C., Brüne, B. & Kempf, V. A. Hypoxia and HIF-1 activation in bacterial infections. Microbes Infect. 19, 144–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Werth, N. et al. Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens. PLoS ONE. 5, e11576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schaffer, K. & Taylor, C. T. The impact of hypoxia on bacterial infection. FEBS J. 282, 2260–2266 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Worlitzsch, D. et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109, 317–325 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schaible, B., Schaffer, K. & Taylor, C. T. Hypoxia, innate immunity and infection in the lung. Respir. Physiol. Neurobiol. 174, 235–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Schaible, B. et al. Hypoxia modulates infection of epithelial cells by Pseudomonas aeruginosa. PLoS ONE. 8, e56491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schaible, B., Taylor, C. T. & Schaffer, K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob. Agents Chemother. 56, 2114–2118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schaible, B. et al. Hypoxia reduces the pathogenicity of Pseudomonas aeruginosa by decreasing the expression of multiple virulence factors. J. Infect. Dis. 215, 1459–1467 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Koh, H. S. et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat. Commun. 6, 6340 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, J. et al. Hypoxia-Inducible Factor-2α limits natural killer T cell cytotoxicity in renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 27, 92–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Luo, L. et al. The role of HIF-1 in up-regulating MICA expression on human renal proximal tubular epithelial cells during hypoxia/reoxygenation. BMC Cell Biol. 11, 91 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chan, M. C., Holt-Martyn, J. P., Schofield, C. J. & Ratcliffe, P. J. Pharmacological targeting of the HIF hydroxylases—a new field in medicine 1development. Mol. Aspects Med. 47–48, 54–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Muchnik, E. & Kaplan, J. HIF prolyl hydroxylase inhibitors for anemia. Expert Opin. Investig. Drugs 20, 645–656 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Maxwell, P. H. & Eckardt, K. U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat. Rev. Nephrol. 12, 157–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Cho, H. et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature. 539, 107–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016). References 132 and 133 demonstrate that selective targeting of the HIF2 pathway may be of clinical benefit in kidney cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cummins, E. P., Doherty, G. A. & Taylor, C. T. Hydroxylases as therapeutic targets in inflammatory bowel disease. Lab. Invest. 93, 378–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Hams, E. et al. The hydroxylase inhibitor dimethyloxallyl glycine attenuates endotoxic shock via alternative activation of macrophages and IL-10 production by B1 cells. Shock 36, 295–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Provenzano, R. et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin. J. Am. Soc. Nephrol. 11, 982–991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brigandi, R. A. et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: 28 day, phase 2A randomized trial. Am. J. Kidney Dis. 67, 861–871 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Pergola, P. E., Spinowitz, B. S., Hartman, C. S., Maroni, B. J. & Haase, V. H. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int. 90, 1115–1122 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Tambuwala, M. M. et al. Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. J. Control. Release 217, 221–227 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Maxwell, P. H. et al. Sites of erythropoietin production. Kidney Int. 51, 393–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Grimm, C. & Willmann, G. Hypoxia in the eye: a two-sided coin. High Alt. Med. Biol. 13169–13175 (2012).

  143. Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc. Natl Acad. Sci. USA 103, 18154–18159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cockman, M. E. et al. Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl Acad. Sci. USA; 103, 14767–1 4772. References 143 and 144 demonstrate that components of the NF-κB pathway are targets for hydroxylation.

    Article  CAS  Google Scholar 

  145. Ghosh, S., Paul, A. & Sen, E. Tumor necrosis factor α-induced hypoxia-inducible factor 1α-β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol. Cell. Biol. 33, 2718–2731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dang, E. V. et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Clambey, E. T. et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA 109, E2784–E2793 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cummins, E. P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134, 156–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Hindryckx, P. et al. Longitudinal quantification of inflammation in the murine dextran sodium sulfate-induced colitis model using muPET/CT. Inflamm. Bowel Dis. 17, 2058–2064 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Cosin-Roger, J. et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat. Commun. 8, 98 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134, 145–155 (2008). References 148 and 151 demonstrate that pharmacological hydroxylase inhibition is protective in colitis.

    Article  CAS  PubMed  Google Scholar 

  152. Hindryckx, P. et al. Hydroxylase inhibition abrogates TNF-alpha-induced intestinal epithelial damage by hypoxia-inducible factor-1-dependent repression of FADD. J. Immunol. 185, 6306–6316 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Hirota, S. A. et al. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology 139, 259–269 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Hart, M. L. et al. Hypoxia-inducible factor-1 alpha dependent protection from intestinal ischemia/reperfusion injury involves ecto-5′-nucleotidase (CD73) and the A2B adenosine receptor. J. Immunol. 186, 4367–4374 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Marchbank, T., Mahmood, A., Harten, S., Maxwell, P. H. & Playford, R. J. Dimethyloxalyglycine stimulates the early stages of gastrointestinal repair processes through VEGF-dependent mechanisms. Lab. Invest. 91, 1684–1694 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Keely, S. et al. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol. 7, 114–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Marks, E. et al. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis. Inflamm. Bowel Dis. 21, 267–275 (2015).

    Article  PubMed  Google Scholar 

  158. Taniguchi, C. M. et al. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci. Transl Med. 6, 236ra64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jeong, S. et al. Lipophilic modification enhances anti-colitic properties of rosmarinic acid by potentiating its HIF-prolyl hydroxylases inhibitory activity. Eur. J. Pharmacol. 747, 114–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Gupta, R. et al. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates murine colitis. Clin. Exp. Gastroenterol. 7, 13–23 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jamadarkhana, P. et al. Treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates ischemic acute kidney injury. Am. J. Nephrol. 36, 208–218 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Bernhardt, W. M. et al. Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc. Natl Acad. Sci. USA 106, 21276–21281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Manresa, M. C. et al. Hydroxylase inhibition regulates inflammation-induced intestinal fibrosis through the suppression of ERK-mediated TGF-β1 signaling [corrected]. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G1076–G1090 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Work from the authors' laboratories is funded through research grants from Science Foundation Ireland, the European Union and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

C.T.T. and S.P.C. both contributed to discussions of the content and the writing, review and editing of this manuscript

Corresponding author

Correspondence to Cormac T. Taylor.

Ethics declarations

Competing interests

C.T.T. and S.P.C. are members of the Scientific Advisory Board of Akebia Therapeutics.

PowerPoint slides

Glossary

Microenvironmental features

Physiochemical conditions found within a specific niche or tissue.

Hypoxia

The condition that arises when cellular oxygen demand exceeds supply.

Electron transport chain

(ETC). Primary eukaryotic system for the reduction of molecular oxygen and the generation of ATP. Located within mitochondria.

Oxidative phosphorylation

(OXPHOS). The generation of cellular ATP using energy derived from electron transport during aerobic respiration.

Lysosomal degradation pathway

A mechanism of intracellular protein degradation that involves proteolysis in lysosomal compartments.

Glycolysis

The utilization of glucose to generate ATP.

Physiological angiogenesis

The normal growth of blood vessels in healthy tissues.

Carotid body

Small organelle situated at the bifurcation of the carotid artery responsible for sensing blood oxygen levels and regulating the respiratory rate.

Semi-allogeneic trophoblasts

Fetal cells that express both maternal and paternal surface antigens.

Crypt–villus axis

Structure at the mucosal surface of the small intestine.

Erythropoiesis

The process by which red blood cell production is controlled. Involves the release of erythropoietin from cells of the kidney and liver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, C., Colgan, S. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 17, 774–785 (2017). https://doi.org/10.1038/nri.2017.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing