Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disease tolerance and immunity in host protection against infection

Key Points

  • Disease tolerance is an evolutionarily conserved defence strategy against infection that does not exert a direct negative effect on the host pathogen load.

  • Disease tolerance relies on tissue damage control mechanisms.

  • Tissue damage control mechanisms rely on stress and damage responses.

  • Innate and adaptive components of the immune system regulate tissue damage control mechanisms and contribute to the establishment of disease tolerance to infection.

  • Host–commensal microorganism interactions regulate disease tolerance against pathogens.

  • Pharmacological targeting of tissue damage control mechanisms induces disease tolerance to infection.

Abstract

The immune system probably evolved to limit the negative effects exerted by pathogens on host homeostasis. This defence strategy relies on the concerted action of innate and adaptive components of the immune system, which sense and target pathogens for containment, destruction or expulsion. Resistance to infection refers to these immune functions, which reduce the pathogen load of an infected host as the means to preserve homeostasis. Immune-driven resistance to infection is coupled to an additional, and arguably as important, defence strategy that limits the extent of dysfunction imposed on host parenchymal tissues during infection, without exerting a direct negative effect on pathogens. This defence strategy, known as disease tolerance, relies on tissue damage control mechanisms that prevent the deleterious effects of pathogens and that uncouples immune-driven resistance mechanisms from immunopathology and disease. In this Review, we provide a unifying view of resistance and disease tolerance in the framework of immunity to infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue damage control and disease tolerance.
Figure 2: Relative contribution of stress and damage responses to the establishment of disease tolerance to infection.
Figure 3: Immune regulation of tissue damage control.
Figure 4: Pathogen class-specific tissue damage control mechanisms.

Similar content being viewed by others

References

  1. Soares, M. P., Gozzelino, R. & Weis, S. Tissue damage control in disease tolerance. Trends Immunol. 35, 483–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014). References 1–3 provide an overview of how different stress and damage reponses contribute to re-establishment of homeostasis after infection and other pathological conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fauci, A. S. & Morens, D. M. The perpetual challenge of infectious diseases. N. Engl. J. Med. 366, 454–461 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Schneider, D. S. & Ayres, J. S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 8, 889–895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012). References 5 and 6 provide a conceptual overview of disease tolerance to infection, bridging its initial description in plants and insects to mice and possibly humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schaefer, J. F. Tolerance to plant disease. Annu. Rev. Phytopathol. 9, 235–252 (1971).

    Article  Google Scholar 

  8. Caldwell, R. M., Schafer, J. F., Compton, L. E. & Patterson, F. L. Tolerance to cereal leaf rusts. Science 128, 714–715 (1958).

    Article  CAS  PubMed  Google Scholar 

  9. Ayres, J. S., Freitag, N. & Schneider, D. S. Identification of Drosophila mutants altering defense of and endurance to Listeria monocytogenes infection. Genetics 178, 1807–1815 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e2 (2008). References 9 and 10 are the first demonstrations of disease tolerance in insects, suggesting that this host defence strategy against infection, identified originally in plants, can be extrapolated to animals. Reference 10 also demonstrates that host symbiotic interactions modulate disease tolerance to pathogens.

    Article  PubMed  CAS  Google Scholar 

  11. Raberg, L., Sim, D. & Read, A. F. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318, 812–814 (2007). This is the original demonstration of disease tolerance in mammals.

    Article  CAS  PubMed  Google Scholar 

  12. Seixas, E. et al. Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proc. Natl Acad. Sci. USA 106, 15837–15842 (2009). This is the first mechanistic study on disease tolerance in mammals using the same experimental model as in reference 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gozzelino, R. et al. Metabolic adaptation to tissue iron overload confers tolerance to malaria. Cell Host Microbe 12, 693–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Rodrigue-Gervais, I. G. et al. Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 15, 23–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Jamieson, A. M. et al. Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science 340, 1230–1234 (2013). This is the first mechanistic demonstration of how deregulation of disease tolerance affects the pathological outcome of co-infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larsen, R. et al. A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl Med. 2, 51ra71 (2010).

    Article  PubMed  CAS  Google Scholar 

  17. Figueiredo, N. et al. Anthracyclines induce DNA damage response-mediated protection against severe sepsis. Immunity 39, 874–884 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bessede, A. et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511, 184–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira, A. et al. Sickle hemoglobin confers tolerance to plasmodium infection. Cell 145, 398–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Pamplona, A. et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat. Med. 13, 703–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Ayres, J. S. Cooperative microbial tolerance behaviors in host-microbiota mutualism. Cell 165, 1323–1331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ayres, J. S. & Schneider, D. S. Tolerance of infections. Annu. Rev. Immunol. 30, 271–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004). This seminal article demonstrates that PRRs sense components of the gut microbiota and help to maintain a homeostatic balance in host–microbiota interactions. The article also suggests that PRRs contribute to tissue damage control in the host gut epithelium.

    Article  CAS  PubMed  Google Scholar 

  26. Ayres, J. S. Inflammasome-microbiota interplay in host physiologies. Cell Host Microbe 14, 491–497 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Sykiotis, G. P. & Bohmann, D. Stress-activated cap'n'collar transcription factors in aging and human disease. Sci. Signal. 3, re3 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hayes, J. D. & Dinkova-Kostova, A. T. The NRF2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Jeney, V. et al. Control of disease tolerance to malaria by nitric oxide and carbon monoxide. Cell Rep. 8, 126–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Ferreira, A., Balla, J., Jeney, V., Balla, G. & Soares, M. P. A central role for free heme in the pathogenesis of severe malaria: the missing link? J. Mol. Med. 86, 1097–1111 (2008). This article proposes that labile haem generated through haemolysis functions as a central component in the pathogenesis of severe forms of malaria. The article also proposes how physiological mechanisms that control the pathogenic effects of labile haem counteract the pathogenesis of severe forms of malaria.

    Article  CAS  PubMed  Google Scholar 

  31. Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Soares, M. P. & Ribeiro, A. M. NRF2 as a master regulator of tissue damage control and disease tolerance to infection. Biochem. Soc. Trans. 43, 663–668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thimmulappa, R. K. et al. NRF2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984–995 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Athale, J. et al. NRF2 promotes alveolar mitochondrial biogenesis and resolution of lung injury in Staphylococcus aureus pneumonia in mice. Free Radic. Biol. Med. 53, 1584–1594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobayashi, E. H. et al. NRF2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eichenfield, D. Z. et al. Tissue damage drives co-localization of NF-κB, SMAD3, and NRF2 to direct Rev-erb sensitive wound repair in mouse macrophages. eLife 5, e13024 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Greer, S. N., Metcalf, J. L., Wang, Y. & Ohh, M. The updated biology of hypoxia-inducible factor. EMBO J. 31, 2448–2460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kelly, B. & O'Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Matak, P. et al. Myeloid HIF-1 is protective in Helicobacter pylori-mediated gastritis. J. Immunol. 194, 3259–3266 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, A. et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166, 1512–1525.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jantsch, J. et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 21, 493–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kino, T. et al. Brx mediates the response of lymphocytes to osmotic stress through the activation of NFAT5. Sci. Signal. 2, ra5 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Brocker, C., Thompson, D. C. & Vasiliou, V. The role of hyperosmotic stress in inflammation and disease. Biomol. Concepts 3, 345–364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuper, C., Fraek, M. L., Muller, H. H., Beck, F. X. & Neuhofer, W. Sepsis-induced urinary concentration defect is related to nitric oxide-dependent inactivation of TonEBP/NFAT5, which downregulates renal medullary solute transport proteins and aquaporin-2. Crit. Care Med. 40, 1887–1895 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Qiu, Y., Hansen, P. J., Zhang, M. & Yang, D. in Experimental Biology 2016 Meeting Faseb Journal. 30, (Suppl.) 920.10 (2016).

    Google Scholar 

  47. Linster, C. L., Van Schaftingen, E. & Hanson, A. D. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9, 72–80 (2013). This article proposes a new concept — metabolite damage.

    Article  CAS  PubMed  Google Scholar 

  48. Franklin, B. S., Mangan, M. S. & Latz, E. Crystal formation in inflammation. Annu. Rev. Immunol. 34, 173–202 (2016). This article provides a detailed conceptual and mechanistic framework for phase transition as a universal 'danger signal' sensed by PRRs.

    Article  CAS  PubMed  Google Scholar 

  49. Gutteridge, J. M. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41, 1819–1828 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008). This article shows the extremely potent pathological effect exerted by lipid peroxidation via TLR4 signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suzuki, T., Motohashi, H. & Yamamoto, M. Toward clinical application of the KEAP1-NRF2 pathway. Trends Pharmacol. Sci. 34, 340–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 33, 107–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Lindquist, S. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191 (1986).

    Article  CAS  PubMed  Google Scholar 

  55. Mohri-Shiomi, A. & Garsin, D. A. Insulin signaling and the heat shock response modulate protein homeostasis in the Caenorhabditis elegans intestine during infection. J. Biol. Chem. 283, 194–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Singh, V. & Aballay, A. Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc. Natl Acad. Sci. USA 103, 13092–13097 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murapa, P., Ward, M. R., Gandhapudi, S. K., Woodward, J. G. & D'Orazio, S. E. Heat shock factor 1 protects mice from rapid death during Listeria monocytogenes infection by regulating expression of tumor necrosis factor-α during fever. Infect. Immun. 79, 177–184 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Richardson, C. E., Kooistra, T. & Kim, D. H. An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 463, 1092–1095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Filone, C. M. et al. The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection. PLoS Pathog. 10, e1003904 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Weitzman, M. D. & Weitzman, J. B. What's the damage? The impact of pathogens on pathways that maintain host genome integrity. Cell Host Microbe 15, 283–294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Orvedahl, A. et al. Autophagy protects against sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maurer, K. et al. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host Microbe 17, 429–440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008). This article is a 'must read' and probably the best succinct review so far on inflammation.

    Article  CAS  PubMed  Google Scholar 

  66. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fridman, J. S. & Lowe, S. W. Control of apoptosis by p53. Oncogene 22, 9030–9040 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Ashida, H. et al. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. 195, 931–942 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gillet, G. & Brun, G. Viral inhibition of apoptosis. Trends Microbiol. 4, 312–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, T. S. & Chau, L. Y. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat. Med. 8, 240–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, Y. C. et al. Nitric oxide and prostaglandin E2 participate in lipopolysaccharide/interferon-gamma-induced heme oxygenase 1 and prevent RAW264.7 macrophages from UV-irradiation-induced cell death. J. Cell. Biochem. 86, 331–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Otterbein, L. E. et al. Carbon monoxide mediates anti-inflammatory effects via the mitogen activated protein kinase pathway. Nat. Med. 6, 422–428 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Brouard, S. et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J. Exp. Med. 192, 1015–1026 (2000). This is the original description of the cytoprotective effects exerted by the gasotransmitter carbon monoxide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Mustafa, A. K., Gadalla, M. M. & Snyder, S. H. Signaling by gasotransmitters. Sci. Signal. 2, re2 (2009).

    PubMed  PubMed Central  Google Scholar 

  79. Wegiel, B. et al. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation. J. Clin. Invest. 124, 4926–4940 (2014). This article proposes that the gasotransmitter carbon monoxide, produced by macrophages via haem catabolism by HO1, provides metabolic sensing of microbes and adjusts macrophage antimicrobial responses accordingly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Soares, M. P. & Hamza, I. Macrophages and iron metabolism. Immnunity 44, 492–504 (2016).

    Article  CAS  Google Scholar 

  81. Beg, A. A. & Baltimore, D. An essential role for NF-kB in preventing TNFα -induced cell death. Science 274, 782–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Buchon, N., Broderick, N. A., Poidevin, M., Pradervand, S. & Lemaitre, B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5, 200–211 (2009). This is the original finding of the crucial part played by regenerative responses of the gut epithelium as a defence strategy against enteric pathogens.

    Article  CAS  PubMed  Google Scholar 

  83. Hochmuth, C. E., Biteau, B., Bohmann, D. & Jasper, H. Redox regulation by KEAP1 and NRF2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8, 188–199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bonfini, A., Liu, X. & Buchon, N. From pathogens to microbiota: how Drosophila intestinal stem cells react to gut microbes. Dev. Comp. Immunol. 64, 22–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Turner, J. E. et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 210, 2951–2965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Monticelli, L. A. et al. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc. Natl Acad. Sci. USA 112, 10762–10767 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015). References 91 and 92 are the original descriptions of an unsuspected physiological role for tissue-resident T reg cells in conferring tissue damage control and disease tolerance to infections (reference 92).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Noel, S. et al. T lymphocyte-specific activation of NRF2 protects from AKI. J. Am. Soc. Nephrol. 26, 2989–3000 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cramer, T. et al. HIF1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ayres, J. S. & Schneider, D. S. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol. 7, e1000150 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Jamieson, A. M., Yu, S., Annicelli, C. H. & Medzhitov, R. Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. Cell Host Microbe 7, 103–114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cunnington, A. J., de Souza, J. B., Walther, M. & Riley, E. M. Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization. Nat. Med. 18, 120–127 (2012). References 99 and 100 are the original findings that disease tolerance to one class of pathogens can compromise immune-driven resistance to co-infections by another class of pathogens.

    Article  CAS  Google Scholar 

  101. Kara, E. E. et al. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog. 10, e1003905 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wynn, T. A. Type 2 cytokines: mechanisms and therapeutic strategies. Nat. Rev. Immunol. 15, 271–282 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Allen, J. E. & Wynn, T. A. Evolution of TH2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 7, e1002003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Soares, M. P. & Weiss, G. The Iron age of host-microbe interactions. EMBO Rep. 16, 1482–1500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Murray, P. J. Amino acid auxotrophy as a system of immunological control nodes. Nat. Immunol. 17, 132–139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sahoo, M., Del Barrio, L., Miller, M. A. & Re, F. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with Burkholderia species. PLoS Pathog. 10, e1004327 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gimblet, C. et al. IL-22 protects against tissue damage during cutaneous leishmaniasis. PLoS ONE 10, e0134698 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Robinson, K. M., Kolls, J. K. & Alcorn, J. F. The immunology of influenza virus-associated bacterial pneumonia. Curr. Opin. Immunol. 34, 59–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Castiglia, V. et al. Type I interferon signaling prevents IL-1β-driven lethal systemic hyperinflammation during invasive bacterial infection of soft tissue. Cell Host Microbe 19, 375–387 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Sullivan, G. W., Fang, G., Linden, J. & Scheld, W. M. A2A adenosine receptor activation improves survival in mouse models of endotoxemia and sepsis. J. Infect. Dis. 189, 1897–1904 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Escobar, D. A. et al. Adenosine monophosphate-activated protein kinase activation protects against sepsis-induced organ injury and inflammation. J. Surg. Res. 194, 262–272 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Mulchandani, N. et al. Stimulation of brain AMP-activated protein kinase attenuates inflammation and acute lung injury in sepsis. Mol. Med. 21, 637–644 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rialdi, A. et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science 352, aad7993 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Couper, K. N., Blount, D. G. & Riley, E. M. IL-10: the master regulator of immunity to infection. J. Immunol. 180, 5771–5777 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Muhl, H. et al. IL-22 in tissue-protective therapy. Br. J. Pharmacol. 169, 761–771 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Vilaplana, C. et al. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J. Infect. Dis. 208, 199–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Carey, M. A. et al. Contrasting effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection. J. Immunol. 175, 6878–6884 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Hideko Tatakihara, V. L. et al. Effects of cyclooxygenase inhibitors on parasite burden, anemia and oxidative stress in murine Trypanosoma cruzi infection. FEMS Immunol. Med. Microbiol. 52, 47–58 (2008).

    Article  PubMed  CAS  Google Scholar 

  119. Stanley, E. D., Jackson, G. G., Panusarn, C., Rubenis, M. & Dirda, V. Increased virus shedding with aspirin treatment of rhinovirus infection. JAMA 231, 1248–1251 (1975).

    Article  CAS  PubMed  Google Scholar 

  120. Tauber, S. C. & Nau, R. Immunomodulatory properties of antibiotics. Curr. Mol. Pharmacol. 1, 68–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cai, Y., Cao, X. & Aballay, A. Whole-animal chemical screen identifies colistin as a new immunomodulator that targets conserved pathways. mBio 5, e01235–14 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Billingham, R. E., Brent, L. & Medawar, P. B. Actively acquired tolerance of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  PubMed  Google Scholar 

  124. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Netea, M. G., Latz, E., Mills, K. H. & O'Neill, L. A. Innate immune memory: a paradigm shift in understanding host defense. Nat. Immunol. 16, 675–679 (2015). Reference 124 provides a mechanistic basis for lipopolysaccharide tolerance in macrophages, which was later expanded to other PRR agonists and coined as 'trained immunity' (references 125 and 126).

    Article  CAS  PubMed  Google Scholar 

  127. Dionne, M. S., Pham, L. N., Shirasu-Hiza, M. & Schneider, D. S. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr. Biol. 16, 1977–1985 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Raberg, L., Graham, A. L. & Read, A. F. Decomposing health: tolerance and resistance to parasites in animals. Phil. Trans. R. Soc. B 364, 37–49 (2009).

    Article  PubMed  Google Scholar 

  129. Simms, E. L. Defining tolerance as a norm of reaction. Evol. Ecol. 14, 563–570 (2000).

    Article  Google Scholar 

  130. Schneider, D. S. Tracing personalized health curves during infections. PLoS Biol. 9, e1001158 (2011). This is the original description of disease curves and their interpretation as a novel way to understand host–pathogen interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Torres, B. Y. et al. Tracking resilience to infections by mapping disease space. PLoS Biol. 14, e1002436 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hedges, L. M., Brownlie, J. C., O'Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science 322, 702 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).

    Article  PubMed  Google Scholar 

  134. Dutra, H. L. et al. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 19, 771–774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl Acad. Sci. USA 109, E23–E31 (2012).

    PubMed  Google Scholar 

  136. Caragata, E. P. et al. Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog. 9, e1003459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zeng, Melody, Y. et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44, 647–658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yilmaz, B. et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell 159, 1277–1289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Villarino, N. F. et al. Composition of the gut microbiota modulates the severity of malaria. Proc. Natl Acad. Sci. USA 113, 2235–2240 (2016). Articles 137–140 provide mechanistic demonstrations of how symbiotic interactions with different bacteria in the microbiota modulate resistance to infections by different blood-borne pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schieber, A. M. et al. Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350, 558–563 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Zele, F., Nicot, A., Duron, O. & Rivero, A. Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system. J. Evol. Biol. 25, 1243–1252 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Pickard, J. M. et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638–641 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Brestoff, J. R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676–684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Stecher, B. et al. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Sun, H., Kamanova, J., Lara-Tejero, M. & Galan, J. E. A. Family of Salmonella type III secretion effector proteins selectively targets the NF-κB signaling pathway to preserve host homeostasis. PLoS Pathog. 12, e1005484 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Chau, T. A. et al. Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nat. Med. 15, 641–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Naquet, P., Giessner, C. & Galland, F. Metabolic adaptation of tissues to stress releases metabolites influencing innate immunity. Curr. Opin. Immunol. 38, 30–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Dal Peraro, M. & van der Goot, F. G. Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol. 14, 77–92 (2016).

    Article  PubMed  CAS  Google Scholar 

  153. Nathan, C. & Shiloh, M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA 97, 8841–8848 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Beckman, J. S. & Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424–C1437 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Becker, T. et al. FOXO-dependent regulation of innate immune homeostasis. Nature 463, 369–373 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Ahn, H. M., Lee, K. S., Lee, D. S. & Yu, K. JNK/FOXO mediated peroxiredoxin V expression regulates redox homeostasis during Drosophila melanogaster gut infection. Dev. Comp. Immunol. 38, 466–473 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Seiler, F. et al. FOXO transcription factors regulate innate immune mechanisms in respiratory epithelial cells. J. Immunol. 190, 1603–1613 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Reed, S. A., Sandesara, P. B., Senf, S. M. & Judge, A. R. Inhibition of FOXO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J. 26, 987–1000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Ip, W. K. & Medzhitov, R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6, 6931 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Idzko, M., Ferrari, D. & Eltzschig, H. K. Nucleotide signalling during inflammation. Nature 509, 310–317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mahamed, D. A., Toussaint, L. E. & Bynoe, M. S. CD73-generated adenosine is critical for immune regulation during Toxoplasma gondii infection. Infect. Immun. 83, 721–729 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Alam, M. S. et al. CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory cytokine production and Helicobacter felis-induced gastritis in mice. J. Infect. Dis. 199, 494–504 (2009).

    Article  PubMed  Google Scholar 

  168. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Madenspacher, J. H. et al. p53 Integrates host defense and cell fate during bacterial pneumonia. J. Exp. Med. 210, 891–904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol. 17, 9–17 (2015).

    Article  CAS  Google Scholar 

  171. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Song, X. et al. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity 43, 488–501 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Thompson and F. Brazza for insightful comments and S. Ramos for careful review and editing of the manuscript (Instituto Gulbenkian de Ciência). M.P.S. is supported by Fundação Calouste Gulbenkian, Fundação para a Ciência e Tecnologia (FCT; PTDC/SAU-TOX/116627/2010 and HMSP-ICT/0022/2010) and the European Community 7th Framework program (ERC-2011-AdG 294709-DAMAGECONTROL). L.F.M. is an Fundação para a Ciência e Tecnologia Investigator and is supported by the European Community Horizon 2020 (ERC-2014-CoG 647888-iPROTECTION). L.T. is supported by Fundação Calouste Gulbenkian and Fundação para a Ciência e Tecnologia PTDC/BEX-GMG/3128/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel P. Soares.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Homeostasis

Maintenance of a stable physiological 'internal' state in multicellular organisms via feedback mechanisms that allow physiological functions to proceed despite variations in the 'external' environment.

Immunopathology

Refers to a breakdown of homeostasis in which immunity functions as the main cause of disease.

Stress

Any variations in the 'external' environment that disrupt the maintenance of a stable physiological environment in which biological processes are allowed to proceed.

Ataxia-telangiectasia mutated kinase

(ATM kinase). A serine and threonine protein kinase that is recruited and activated by DNA double-strand breaks and that has an important role in the activation of DNA damage responses.

Necroptosis

A specific form of programmed cell death mediated via a genetically encoded mechanism involving receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 and the mixed lineage kinase domain-like (MLKL) pseudokinase.

Ferroptosis

Genetically encoded form of programmed cell death driven by loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and by the accumulation of lipid hydroperoxides.

Alarmins

Endogenous molecules released from damaged cells and sensed by receptors of the immune system that alert for tissue dysfunction or damage, associated with disruption of homeostasis.

Nutritional immunity

An evolutionarily conserved resistance mechanism against infection based on the host's ability to withhold nutrients, such as iron, from pathogens.

Anthracycline

A class of red aromatic polyketide drugs derived from Streptomyces spp. bacteria that intercalate into DNA, arresting transcription and cell division, a property widely used therapeutically against cancers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, M., Teixeira, L. & Moita, L. Disease tolerance and immunity in host protection against infection. Nat Rev Immunol 17, 83–96 (2017). https://doi.org/10.1038/nri.2016.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing