Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Ribosome profiling: new views of translation, from single codons to genome scale

Abstract

Genome-wide analyses of gene expression have so far focused on the abundance of mRNA species as measured either by microarray or, more recently, by RNA sequencing. However, neither approach provides information on protein synthesis, which is the true end point of gene expression. Ribosome profiling is an emerging technique that uses deep sequencing to monitor in vivo translation. Studies using ribosome profiling have already provided new insights into the identity and the amount of proteins that are produced by cells, as well as detailed views into the mechanism of protein synthesis itself.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribosome footprint profiling.
Figure 2: Analysis of ribosome occupancy data.
Figure 3: Alternative reading frames.
Figure 4: Ribosomal pausing and co-translational processes.
Figure 5: Deconvolving transcription and translation.

Similar content being viewed by others

References

  1. Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21, 33–37 (1999).

    Article  CAS  Google Scholar 

  2. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63 (2009).

    Article  CAS  Google Scholar 

  3. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  Google Scholar 

  4. Johannes, G., Carter, M. S., Eisen, M. B., Brown, P. O. & Sarnow, P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl Acad. Sci. USA 96, 13118–13123 (1999).

    Article  CAS  Google Scholar 

  5. Arava, Y. et al. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 100, 3889–3894 (2003).

    Article  CAS  Google Scholar 

  6. Hendrickson, D. G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, e1000238 (2009).

    Article  Google Scholar 

  7. Steitz, J. A. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224, 957–964 (1969).

    Article  CAS  Google Scholar 

  8. Wolin, S. L. & Walter, P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 7, 3559–3569 (1988).

    Article  CAS  Google Scholar 

  9. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  10. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  11. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  Google Scholar 

  12. Olshen, A. B. et al. Assessing gene-level translational control from ribosome profiling. Bioinformatics 29, 2995–3002 (2013).

    Article  CAS  Google Scholar 

  13. Michel, A. M. et al. GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Res. 42, D859–D864 (2013).

    Article  Google Scholar 

  14. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    Article  CAS  Google Scholar 

  15. Shah, P., Ding, Y., Niemczyk, M., Kudla, G. & Plotkin, J. B. Rate-limiting steps in yeast protein translation. Cell 153, 1589–1601 (2013).

    Article  CAS  Google Scholar 

  16. Arribere, J. A. & Gilbert, W. V. Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. Genome Res. 23, 977–987 (2013).

    Article  CAS  Google Scholar 

  17. Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Rev. Genet. 13, 227–232 (2012).

    Article  CAS  Google Scholar 

  18. Michel, A. M. et al. Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res. 22, 2219–2229 (2012).

    Article  CAS  Google Scholar 

  19. Brar, G. A. et al. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335, 552–557 (2012).

    Article  CAS  Google Scholar 

  20. Chew, G. L. et al. Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development 140, 2828–2834 (2013).

    Article  CAS  Google Scholar 

  21. Lee, S., Liu, B., Huang, S. X., Shen, B. & Qian, S. B. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl Acad. Sci. USA 109, E2424–E2432 (2012).

    Article  CAS  Google Scholar 

  22. Fritsch, C. et al. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Res. 22, 2208–2218 (2012).

    Article  CAS  Google Scholar 

  23. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  Google Scholar 

  24. Starck, S. R. et al. Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science 336, 1719–1723 (2012).

    Article  CAS  Google Scholar 

  25. Menschaert, G. et al. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events. Mol. Cell. Proteomics 12, 1780–1790 (2013).

    Article  CAS  Google Scholar 

  26. Fournier, C. T. et al. Amino termini of many yeast proteins map to downstream start codons. J. Proteome Res. 11, 5712–5719 (2012).

    Article  CAS  Google Scholar 

  27. Pelechano, V., Wei, W. & Steinmetz, L. M. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497, 127–131 (2013).

    Article  CAS  Google Scholar 

  28. Sonenberg, N. & Hinnebusch, A. G. New modes of translational control in development, behavior and disease. Mol. Cell 28, 721–729 (2007).

    Article  CAS  Google Scholar 

  29. Stern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088–1093 (2012).

    Article  CAS  Google Scholar 

  30. Schwaid, A. G. et al. Chemoproteomic discovery of cysteine-containing human short open reading frames. J. Am. Chem. Soc. 135, 16750–16753 (2013).

    Article  CAS  Google Scholar 

  31. Slavoff, S. A. et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nature Chem. Biol. 9, 59–64 (2013).

    Article  CAS  Google Scholar 

  32. Kondo, T. et al. Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. Nature Cell Biol. 9, 660–665 (2007).

    Article  CAS  Google Scholar 

  33. Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S. & Lander, E. S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154, 240–251 (2013).

    Article  CAS  Google Scholar 

  34. Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

    Article  CAS  Google Scholar 

  35. Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nature Rev. Genet. 10, 715–724 (2009).

    Article  Google Scholar 

  36. Carvunis, A. R. et al. Proto-genes and de novo gene birth. Nature 487, 370–374 (2012).

    Article  CAS  Google Scholar 

  37. Calvo, S. E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl Acad. Sci. USA 106, 7507–7512 (2009).

    Article  CAS  Google Scholar 

  38. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nature Rev. Genet. 12, 32–42 (2011).

    Article  CAS  Google Scholar 

  39. Li, G. W., Oh, E. & Weissman, J. S. The anti- Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538–541 (2012).

    Article  CAS  Google Scholar 

  40. Qian, W., Yang, J. R., Pearson, N. M., Maclean, C. & Zhang, J. Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet. 8, e1002603 (2012).

    Article  CAS  Google Scholar 

  41. Stadler, M. & Fire, A. Wobble base-pairing slows in vivo translation elongation in metazoans. RNA 17, 2063–2073 (2011).

    Article  CAS  Google Scholar 

  42. Dana, A. & Tuller, T. Determinants of translation elongation speed and ribosomal profiling biases in mouse embryonic stem cells. PLoS Comput. Biol. 8, e1002755 (2012).

    Article  CAS  Google Scholar 

  43. Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010).

    Article  CAS  Google Scholar 

  44. Woolstenhulme, C. J. et al. Nascent peptides that block protein synthesis in bacteria. Proc. Natl Acad. Sci. USA 110, E878–E887 (2013).

    Article  CAS  Google Scholar 

  45. Charneski, C. A. & Hurst, L. D. Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol. 11, e1001508 (2013).

    Article  CAS  Google Scholar 

  46. Ito, K. & Chiba, S. Arrest peptides: cis-acting modulators of translation. Annu. Rev. Biochem. 82, 171–202 (2013).

    Article  CAS  Google Scholar 

  47. Pechmann, S., Willmund, F. & Frydman, J. The ribosome as a hub for protein quality control. Mol. Cell 49, 411–421 (2013).

    Article  CAS  Google Scholar 

  48. Shalgi, R. et al. Widespread regulation of translation by elongation pausing in heat shock. Mol. Cell 49, 439–452 (2013).

    Article  CAS  Google Scholar 

  49. Gerashchenko, M. V., Lobanov, A. V. & Gladyshev, V. N. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc. Natl Acad. Sci. USA 109, 17394–17399 (2012).

    Article  CAS  Google Scholar 

  50. Liu, B., Han, Y. & Qian, S. B. Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol. Cell 49, 453–463 (2013).

    Article  CAS  Google Scholar 

  51. Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295–1308 (2011).

    Article  CAS  Google Scholar 

  52. Han, Y. et al. Monitoring cotranslational protein folding in mammalian cells at codon resolution. Proc. Natl Acad. Sci. USA 109, 12467–12472 (2012).

    Article  CAS  Google Scholar 

  53. Spriggs, K. A., Bushell, M. & Willis, A. E. Translational regulation of gene expression during conditions of cell stress. Mol. Cell 40, 228–237 (2010).

    Article  CAS  Google Scholar 

  54. Wang, D. O., Martin, K. C. & Zukin, R. S. Spatially restricting gene expression by local translation at synapses. Trends Neurosci. 33, 173–182 (2010).

    Article  CAS  Google Scholar 

  55. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  Google Scholar 

  56. Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    Article  CAS  Google Scholar 

  57. Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    Article  CAS  Google Scholar 

  58. Cho, J. et al. LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell 151, 765–777 (2012).

    Article  CAS  Google Scholar 

  59. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  Google Scholar 

  60. Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  CAS  Google Scholar 

  61. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  Google Scholar 

  62. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    Article  CAS  Google Scholar 

  63. Stadler, M., Artiles, K., Pak, J. & Fire, A. Contributions of mRNA abundance, ribosome loading, and post- or peri-translational effects to temporal repression of C. elegans heterochronic miRNA targets. Genome Res. 22, 2418–2426 (2012).

    Article  CAS  Google Scholar 

  64. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  Google Scholar 

  65. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protoc. 7, 1534–1550 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks N. McGlincy and his laboratory members more generally for comments on the manuscript, as well as L. Lareau for her suggestions and for sharing unpublished results. This work was partly supported by the Searle Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas T. Ingolia.

Ethics declarations

Competing interests

N.T.I. is Inventor on patent application covering ribosome profiling.

PowerPoint slides

Glossary

Codon usage biases

Enrichment for certain synonymous codons, particularly in well-expressed genes.

Polysome

Several translating ribosomes that are held together by a single mRNA transcript.

Polysome profiling

The analysis of polysomal mRNAs that are fractionated by the number of ribosomes on each transcript.

Reading frame

The sequence within an mRNA that begins at a start codon and that extends to the next in-frame stop codon.

Wobble pairing

Non-Watson–Crick base pairing that permits a single tRNA anti-codon to recognize multiple codons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingolia, N. Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15, 205–213 (2014). https://doi.org/10.1038/nrg3645

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3645

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing