Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Meiotic recombination in mammals: localization and regulation

Key Points

  • Meiotic recombination is a major source of genetic diversity in a population.

  • Recent advances in mapping recombination hot spots have shed light on the evolutionary dynamics of recombination hotspot localization and on the factors involved in their specification.

  • The localization of meiotic recombination sites in humans and mice is determined by the DNA-binding specificity of PR domain-containing 9 (PRDM9), which is instrumental in the specification of recombination hot spots. The PRDM9 DNA-binding domain has quickly evolved under positive selection. This evolution may be linked to the erosion of PRDM9-binding sites owing to meiotic DNA double-strand break (DSB) repair..

  • Meiotic DSBs are catalysed by the meiotic recombination protein SPO11 in humans and mice and are regulated by other proteins, which leads to the regulation of recombination.

  • Several factors required for DSB formation are localized on chromosome axes, and this association with chromosome axes regulates meiotic recombination, from the formation of DSBs to their resolution into final recombination products that are formed from either crossover or non-crossover intermediates.

  • In mammals, the proteins RING finger protein 212 (RNF212) and human enhancer of invasion 10 (HEI10) have a key role in promoting DSB repair towards crossovers from a subset of recombination intermediates. These findings provide new insights into the control of crossover frequency.

Abstract

During meiosis, a programmed induction of DNA double-strand breaks (DSBs) leads to the exchange of genetic material between homologous chromosomes. These exchanges increase genome diversity and are essential for proper chromosome segregation at the first meiotic division. Recent findings have highlighted an unexpected molecular control of the distribution of meiotic DSBs in mammals by a rapidly evolving gene, PR domain-containing 9 (PRDM9), and genome-wide analyses have facilitated the characterization of meiotic DSB sites at unprecedented resolution. In addition, the identification of new players in DSB repair processes has allowed the delineation of recombination pathways that have two major outcomes, crossovers and non-crossovers, which have distinct mechanistic roles and consequences for genome evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosome organization and cytology during meiotic prophase I.
Figure 2: Model for the role of PRDM9 in meiotic DSB localization.
Figure 3: Proteins involved in mammalian meiotic recombination.

Similar content being viewed by others

References

  1. Coop, G. & Przeworski, M. An evolutionary view of human recombination. Nature Rev. Genet. 8, 23–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Gerton, J. L. & Hawley, R. S. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nature Rev. Genet. 6, 477–487 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Baudat, F. & de Massy, B. Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res. 15, 565–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. de Massy, B. Initiation of meiotic recombination: how and where? Annu. Rev. Genet. http://dx.doi.org/10.1146/annurev-genet-110711-155423 (2013).

  5. Bolcun-Filas, E. & Schimenti, J. C. Genetics of meiosis and recombination in mice. Int. Rev. Cell. Mol. Biol. 298, 179–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Borde, V. & de Massy, B. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Curr. Opin. Genet. Dev. 23, 147–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Paigen, K. & Petkov, P. Mammalian recombination hot spots: properties, control and evolution. Nature Rev. Genet. 11, 221–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Arnheim, N., Calabrese, P. & Tiemann-Boege, I. Mammalian meiotic recombination hot spots. Annu. Rev. Genet. 41, 369–399 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Jeffreys, A. J., Murray, J. & Neumann, R. High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol. Cell 2, 267–273 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Auton, A. & McVean, G. Estimating recombination rates from genetic variation in humans. Methods Mol. Biol. 856, 217–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. McVean, G. A. et al. The fine-scale structure of recombination rate variation in the human genome. Science 304, 581–584 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Brunschwig, H. et al. Fine-scale map of recombination rates and hotspots in the mouse genome. Genetics 191, 757–764 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R. D. & Petukhova, G. V. Genetic recombination is directed away from functional genomic elements in mice. Nature 485, 642–645 (2012). Using the powerful detection of hot spots by chromatin immunoprecipitation, this paper shows that the localization of most hot spots depends on PRDM9 and that in the absence of PRDM9, meiotic DSBs occur at H3K4me3-enriched sites.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Smagulova, F. et al. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 472, 375–378 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–840 (2010). This paper establishes the role of PRDM9 by using a mouse genetic approach, by showing the major contribution of PRDM9 in crossover localization in humans and by using analysis of the DNA-binding specificity of PRDM9 in vitro.

    Article  CAS  PubMed  Google Scholar 

  17. Myers, S. et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327, 876–879 (2010). The motif previously identified by these authors in 2008 has a pattern of evolution that is consistent with the motif being actively involved in the initiation of meiotic recombination, and PRDM9 is predicted to recognize this motif.

    Article  CAS  PubMed  Google Scholar 

  18. Parvanov, E. D., Petkov, P. M. & Paigen, K. Prdm9 controls activation of mammalian recombination hotspots. Science 327, 835 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Hayashi, K., Yoshida, K. & Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438, 374–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, H. et al. Molecular basis for the regulation of the H3K4 methyltransferase activity of PRDM9. Cell Rep. http://dx.doi.org/10.1016/j.celrep.2013.08.035 (2013).

  21. Auton, A. et al. A fine-scale chimpanzee genetic map from population sequencing. Science 336, 193–198 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Buard, J., Barthes, P., Grey, C. & de Massy, B. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J. 28, 2616–2624 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Grey, C. et al. Mouse PRDM9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination. PLoS Biol. 9, e1001176 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Billings, T. et al. DNA binding specificities of the long zinc finger recombination protein PRDM9. Genome Biol. 14, R35 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berg, I. L. et al. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nature Genet. 42, 859–863 (2010). This study experimentally shows in humans that PRDM9 not only determines hot spots of meiotic recombination but also controls the instability of repeated sequences at the origin of pathological genome rearrangements.

    Article  CAS  PubMed  Google Scholar 

  26. Berg, I. L. et al. Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations. Proc. Natl Acad. Sci. USA 108, 12378–12383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hinch, A. G. et al. The landscape of recombination in African Americans. Nature 476, 170–175 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Myers, S., Freeman, C., Auton, A., Donnelly, P. & McVean, G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nature Genet. 40, 1124–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lichten, M. & de Massy, B. The impressionistic landscape of meiotic recombination. Cell 147, 267–270 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Acquaviva, L. et al. The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 339, 215–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Sommermeyer, V., Beneut, C., Chaplais, E., Serrentino, M. E. & Borde, V. Spp1, a member of the Set1 complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol. Cell 49, 43–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi, K. & Matsui, Y. Meisetz, a novel histone tri-methyltransferase, regulates meiosis-specific epigenesis. Cell Cycle 5, 615–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Bhattacharyya, T. et al. Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc. Natl Acad. Sci. USA 110, E468–E477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J. C. & Forejt, J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323, 373–375 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Axelsson, E., Webster, M. T., Ratnakumar, A., Ponting, C. P. & Lindblad-Toh, K. Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome. Genome Res. 22, 51–63 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Munoz-Fuentes, V., Di Rienzo, A. & Vila, C. Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes. PLoS ONE 6, e25498 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Oliver, P. L. et al. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet. 5, e1000753 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Shiroishi, T., Koide, T., Yoshino, M., Sagai, T. & Moriwaki, K. Hotspots of homologous recombination in mouse meiosis. Adv. Biophys. 31, 119–132 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Ptak, S. E. et al. Fine-scale recombination patterns differ between chimpanzees and humans. Nature Genet. 37, 429–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Ptak, S. E. et al. Absence of the TAP2 human recombination hotspot in chimpanzees. PLoS Biol. 2, E155 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Winckler, W. et al. Comparison of fine-scale recombination rates in humans and chimpanzees. Science 308, 107–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Jeffreys, A. J. & Neumann, R. The rise and fall of a human recombination hot spot. Nature Genet. 41, 625–629 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Jeffreys, A. J., Neumann, R., Panayi, M., Myers, S. & Donnelly, P. Human recombination hot spots hidden in regions of strong marker association. Nature Genet. 37, 601–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Birtle, Z. & Ponting, C. P. Meisetz and the birth of the KRAB motif. Bioinformatics 22, 2841–2845 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Ponting, C. P. What are the genomic drivers of the rapid evolution of PRDM9? Trends Genet. 27, 165–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Thomas, J. H., Emerson, R. O. & Shendure, J. Extraordinary molecular evolution in the PRDM9 fertility gene. PLoS ONE 4, e8505 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kong, A. et al. Fine-scale recombination rate differences between sexes, populations and individuals. Nature 467, 1099–1103 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Groeneveld, L. F., Atencia, R., Garriga, R. M. & Vigilant, L. High diversity at PRDM9 in chimpanzees and bonobos. PLoS ONE 7, e39064 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Steiner, C. C. & Ryder, O. A. Characterization of prdm9 in equids and sterility in mules. PLoS ONE 8, e61746 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jeffreys, A. J., Cotton, V. E., Neumann, R. & Lam, K. W. Recombination regulator PRDM9 influences the instability of its own coding sequence in humans. Proc. Natl Acad. Sci. USA 110, 600–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Boulton, A., Myers, R. S. & Redfield, R. J. The hotspot conversion paradox and the evolution of meiotic recombination. Proc. Natl Acad. Sci. USA 94, 8058–8063 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bergerat, A. et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Malik, S. B., Ramesh, M. A., Hulstrand, A. M. & Logsdon, J. M. Jr. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol. Biol. Evol. 24, 2827–2841 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Metzler-Guillemain, C. & de Massy, B. Identification and characterization of an SPO11 homolog in the mouse. Chromosoma 109, 133–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Romanienko, P. J. & CameriniOtero, R. D. Cloning, characterization, and localization of mouse and human SPO11. Genomics 61, 156–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Bellani, M. A., Boateng, K. A., McLeod, D. & Camerini-Otero, R. D. The expression profile of the major mouse SPO11 isoforms indicates that SPO11β introduces double strand breaks and suggests that SPO11α has an additional role in prophase in both spermatocytes and oocytes. Mol. Cell. Biol. 30, 4391–4403 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kauppi, L. et al. Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 331, 916–920 (2011). This study uncovers specific genetic control and structural properties of the PAR region.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Boateng, K. A., Bellani, M. A., Gregoretti, I. V., Pratto, F. & Camerini-Otero, R. D. Homologous pairing preceding SPO11-mediated double-strand breaks in mice. Dev. Cell 24, 196–205 (2013). This is the first study to address how and when homologues interact in mouse meiosis. It uses a detailed immunofluorescence in situ hybridization analysis of homologue distances in meiotic prophase.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kumar, R., Bourbon, H. M. & de Massy, B. Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev. 24, 1266–1280 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Libby, B. J., Reinholdt, L. G. & Schimenti, J. C. Positional cloning and characterization of Mei1, a vertebrate-specific gene required for normal meiotic chromosome synapsis in mice. Proc. Natl Acad. Sci. USA 100, 15706–15711 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. De Muyt, A. et al. AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J. 26, 4126–4137 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005). This paper identifies a key molecular step in meiotic recombination that has many implications for the mechanism and the regulation of recombination. Moreover, this step is shown to be conserved in S. cerevisiae and Mus musculus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lange, J. et al. ATM controls meiotic double-strand-break formation. Nature 479, 237–240 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kauppi, L. et al. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev. 27, 873–886 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Smagulova, F. et al. Suppression of genetic recombination in the pseudoautosomal region and at subtelomeres in mice with a hypomorphic Spo11 allele. BMC Genomics 14, 493 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Adler, I. D. Comparison of the duration of spermatogenesis between male rodents and humans. Mutat. Res. 352, 169–172 (1996).

    Article  PubMed  Google Scholar 

  70. Hartshorne, G. M., Lyrakou, S., Hamoda, H., Oloto, E. & Ghafari, F. Oogenesis and cell death in human prenatal ovaries: what are the criteria for oocyte selection? Mol. Hum. Reprod. 15, 805–819 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Paigen, K. & Petkov, P. Meiotic DSBs and the control of mammalian recombination. Cell Res. 22, 1624–1626 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cole, F. et al. Homeostatic control of recombination is implemented progressively in mouse meiosis. Nature Cell Biol. 14, 424–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Cohen, P. E., Pollack, S. E. & Pollard, J. W. Genetic analysis of chromosome pairing, recombination and cell cycle control during first meiotic prophase in mammals. Endocr. Rev. 27, 398–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Hunter, N. in Molecular Genetics of Recombination (eds Aguilera, A. & Rothstein, R.) 381–442 (Springer, 2007).

    Google Scholar 

  75. Mahadevaiah, S. K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nature Genet. 27, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Barchi, M. et al. Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol. Cell. Biol. 25, 7203–7215 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bellani, M. A., Romanienko, P. J., Cairatti, D. A. & Camerini-Otero, R. D. SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm−/− spermatocytes. J. Cell Sci. 118, 3233–3245 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kidane, D. et al. DNA polymerase β is critical for mouse meiotic synapsis. EMBO J. 29, 410–423 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Wei, K. et al. Inactivation of exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev. 17, 603–614 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hunter, N. Double duty for Exo1 during meiotic recombination. Cell Cycle 10, 2607–2609 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Barlow, A. L., Benson, F. E., West, S. C. & Hulten, M. A. Distribution of the Rad51 recombinase in human and mouse spermatocytes. EMBO J. 16, 5207–5215 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Moens, P. B. et al. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination. J. Cell Sci. 115, 1611–1622 (2002). This is a major report of the dynamics and localization of proteins during meiotic prophase. The laboratories of T. Ashley, M. Hulten, C. Heyting and others have also done similar studies.

    CAS  PubMed  Google Scholar 

  84. Sharan, S. K. et al. BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development 131, 131–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Xu, X., Aprelikova, O., Moens, P., Deng, C. X. & Furth, P. A. Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 130, 2001–2012 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Chi, P., San Filippo, J., Sehorn, M. G., Petukhova, G. V. & Sung, P. Bipartite stimulatory action of the Hop2–Mnd1 complex on the Rad51 recombinase. Genes Dev. 21, 1747–1757 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Petukhova, G. V. et al. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nature Struct. Mol. Biol. 12, 449–453 (2005).

    Article  CAS  Google Scholar 

  88. Petukhova, G. V., Romanienko, P. J. & Camerini-Otero, R. D. The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev. Cell 5, 927–936 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Cloud, V., Chan, Y. L., Grubb, J., Budke, B. & Bishop, D. K. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222–1225 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Neale, M. J. & Keeney, S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kneitz, B. et al. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 14, 1085–1097 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Edelmann, W. et al. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nature Genet. 21, 123–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. de Vries, S. S. et al. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 13, 523–531 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lutzmann, M. et al. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol. Cell 47, 523–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Raynard, S. et al. Functional role of BLAP75 in BLM-topoisomerase IIIα-dependent Holliday junction processing. J. Biol. Chem. 283, 15701–15708 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wu, L. et al. BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc. Natl Acad. Sci. USA 103, 4068–4073 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Holloway, J. K., Morelli, M. A., Borst, P. L. & Cohen, P. E. Mammalian BLM helicase is critical for integrating multiple pathways of meiotic recombination. J. Cell Biol. 188, 779–789 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Adelman, C. A. & Petrini, J. H. ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over. PLoS Genet. 4, e1000042 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Yang, F. et al. Meiotic failure in male mice lacking an X-linked factor. Genes Dev. 22, 682–691 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Guiraldelli, M. F., Eyster, C., Wilkerson, J. L., Dresser, M. E. & Pezza, R. J. Mouse HFM1/Mer3 is required for crossover formation and complete synapsis of homologous chromosomes during meiosis. PLoS Genet. 9, e1003383 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Reynolds, A. et al. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nature Genet. 45, 269–278 (2013). The cellular and genetic analyses described in this paper show that RNF212 is essential for the formation of crossovers because it promotes the formation and the stabilization of crossover-specific recombination complexes.

    Article  CAS  PubMed  Google Scholar 

  102. Cheng, C. H. et al. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ward, J. O. et al. Mutation in mouse Hei10, an E3 ubiquitin ligase, disrupts meiotic crossing over. PLoS Genet. 3, e139 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. De Los Santos, T. et al. The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164, 81–94 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Baker, S. M. et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nature Genet. 13, 336–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Edelmann, W. et al. Meiotic pachytene arrest in MLH1-deficient mice. Cell 85, 1125–1134 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Lipkin, S. M. et al. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nature Genet. 31, 385–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Holloway, J. K., Booth, J., Edelmann, W., McGowan, C. H. & Cohen, P. E. MUS81 generates a subset of MLH1–MLH3-independent crossovers in mammalian meiosis. PLoS Genet. 4, e1000186 (2008). This study provides evidence for two crossover pathways in mice: a major MLH1–MLH3 dependent pathway, which accounts for 90% of crossovers, and the MUS81-dependent pathway.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Daniel, K. et al. Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nature Cell Biol. 13, 599–610 (2011). This paper shows that HORMAD1, which is a component of the meiotic chromosome axes, has a key role at the interface of synaptonemal complex formation, recombination and progression through meiotic prophase.

    Article  CAS  PubMed  Google Scholar 

  110. Shin, Y. H. et al. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS Genet. 6, e1001190 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Li, X. C., Bolcun-Filas, E. & Schimenti, J. C. Genetic evidence that synaptonemal complex axial elements govern recombination pathway choice in mice. Genetics 189, 71–82 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. McNicoll, F., Stevense, M. & Jessberger, R. Cohesin in gametogenesis. Curr. Top. Dev. Biol. 102, 1–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Fraune, J., Schramm, S., Alsheimer, M. & Benavente, R. The mammalian synaptonemal complex: protein components, assembly and role in meiotic recombination. Exp. Cell Res. 318, 1340–1346 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Kouznetsova, A., Benavente, R., Pastink, A. & Hoog, C. Meiosis in mice without a synaptonemal complex. PLoS ONE 6, e28255 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zickler, D. From early homologue recognition to synaptonemal complex formation. Chromosoma 115, 158–174 (2006).

    Article  PubMed  Google Scholar 

  116. Kogo, H. et al. HORMAD2 is essential for synapsis surveillance during meiotic prophase via the recruitment of ATR activity. Genes Cells 17, 897–912 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Kogo, H. et al. HORMAD1-dependent checkpoint/surveillance mechanism eliminates asynaptic oocytes. Genes Cells 17, 439–454 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Wojtasz, L. et al. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes Dev. 26, 958–973 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Li, X. & Schimenti, J. C. Mouse pachytene checkpoint 2 (Trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet. 3, e130 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Roig, I. et al. Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet. 6, e10010162 (2010).

    Article  CAS  Google Scholar 

  121. Perera, D. et al. TopBP1 and ATR colocalization at meiotic chromosomes: role of TopBP1/Cut5 in the meiotic recombination checkpoint. Mol. Biol. Cell 15, 1568–1579 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Turner, J. M. et al. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr. Biol. 14, 2135–2142 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Chowdhury, R., Bois, P. R., Feingold, E., Sherman, S. L. & Cheung, V. G. Genetic analysis of variation in human meiotic recombination. PLoS Genet. 5, e1000648 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kong, A. et al. Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319, 1398–1401 (2008). This study analyses high-resolution, sex-specific human genetic maps, which allows the identification of polymorphisms in the RNF212 gene that are associated with variation in genome-wide crossover rate.

    Article  CAS  PubMed  Google Scholar 

  125. Fledel-Alon, A. et al. Variation in human recombination rates and its genetic determinants. PLoS ONE 6, e20321 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Sandor, C. et al. Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLoS Genet. 8, e1002854 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Stefansson, H. et al. A common inversion under selection in Europeans. Nature Genet. 37, 129–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, P., Carvalho, C. M., Hastings, P. J. & Lupski, J. R. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 22, 211–220 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Sasaki, M., Lange, J. & Keeney, S. Genome destabilization by homologous recombination in the germ line. Nature Rev. Mol. Cell Biol. 11, 182–195 (2010).

    Article  CAS  Google Scholar 

  130. Nagaoka, S. I., Hassold, T. J. & Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nature Rev. Genet. 13, 493–504 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Lam, K. W. & Jeffreys, A. J. Processes of copy-number change in human DNA: the dynamics of α-globin gene deletion. Proc. Natl Acad. Sci. USA 103, 8921–8927 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lam, K. W. & Jeffreys, A. J. Processes of de novo duplication of human α-globin genes. Proc. Natl Acad. Sci. USA 104, 10950–10955 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hellenthal, G. & Stephens, M. Insights into recombination from population genetic variation. Curr. Opin. Genet. Dev. 16, 565–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Lu, S. et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338, 1627–1630 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Kirkness, E. F. et al. Sequencing of isolated sperm cells for direct haplotyping of a human genome. Genome Res. 23, 826–832 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Billings, T. et al. Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping. PLoS ONE 5, e15340 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Coop, G., Wen, X., Ober, C., Pritchard, J. K. & Przeworski, M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319, 1395–1398 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Paigen, K. et al. The recombinational anatomy of a mouse chromosome. PLoS Genet. 4, e1000119 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Cox, A. et al. A new standard genetic map for the mouse. Genetics 182, 1335–1344 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Khil, P. P., Smagulova, F., Brick, K. M., Camerini-Otero, R. D. & Petukhova, G. V. Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA. Genome Res. 22, 957–965 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Pan, J. et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Fumasoni, I. et al. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol. Biol. 7, 187 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Fog, C. K., Galli, G. G. & Lund, A. H. PRDM proteins: important players in differentiation and disease. Bioessays 34, 50–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Eom, G. H. et al. Histone methyltransferase PRDM8 regulates mouse testis steroidogenesis. Biochem. Biophys. Res. Commun. 388, 131–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Kim, K. C., Geng, L. & Huang, S. Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res. 63, 7619–7623 (2003).

    CAS  PubMed  Google Scholar 

  147. Pinheiro, I. et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150, 948–960 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Briknarova, K., Atwater, D. Z., Glicken, J. M., Maynard, S. J. & Ness, T. E. The PR/SET domain in PRDM4 is preceded by a zinc knuckle. Proteins 79, 2341–2345 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Schapira, M. Structural chemistry of human, SET domain protein methyltransferases. Curr. Chem. Genom. 5, 85–94 (2011).

    Article  CAS  Google Scholar 

  150. Iyengar, S. et al. Functional analysis of KAP1 genomic recruitment. Mol. Cell. Biol. 31, 1833–1847 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Lim, F. L., Soulez, M., Koczan, D., Thiesen, H. J. & Knight, J. C. A. KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene 17, 2013–2018 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Smith, H. A. & McNeel, D. G. The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clin. Dev. Immunol. 2010, 150591 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Ashley, T. et al. Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates. Chromosoma 104, 19–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Turner, J. M. Meiotic sex chromosome inactivation. Development 134, 1823–1831 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Burgoyne, P. S., Mahadevaiah, S. K. & Turner, J. M. The consequences of asynapsis for mammalian meiosis. Nature Rev. Genet. 10, 207–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Royo, H. et al. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr. Biol. 20, 2117–2123 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. de la Fuente, R. et al. Meiotic pairing and segregation of achiasmate sex chromosomes in Eutherian mammals: the role of SYCP3 protein. PLoS Genet. 3, e198 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Maheshwari, S. & Barbash, D. A. The genetics of hybrid incompatibilities. Annu. Rev. Genet. 45, 331–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Dzur-Gejdosova, M., Simecek, P., Gregorova, S., Bhattacharyya, T. & Forejt, J. Dissecting the genetic architecture of F1 hybrid sterility in house mice. Evolution 66, 3321–3335 (2012).

    Article  PubMed  Google Scholar 

  160. Flachs, P. et al. Interallelic and intergenic incompatibilities of the Prdm9 (Hst1) gene in mouse hybrid sterility. PLoS Genet. 8, e1003044 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Ding, X. et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12, 863–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Shi, W. et al. Essential developmental, genomic stability, and tumour suppressor functions of the mouse orthologue of hSSB1/NABP2. PLoS Genet. 9, e1003298 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. La Salle, S. et al. Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells. Biol. Reprod. 86, 1–12 (2012).

    Google Scholar 

  164. Liang, Y. et al. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice. PLoS Genet. 6, e1000826 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Guillon, H. & de Massy, B. An initiation site for meiotic crossing-over and gene conversion in the mouse. Nature Genet. 32, 296–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Guillon, H., Baudat, F., Grey, C., Liskay, R.M. & de Massy, B. Crossover and noncrossover pathways in mouse meiosis. Mol. Cell 20, 563–573 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.d.M. is supported by the Centre National de la Recherche Scientifique, the Agence Nationale de la Recherche (09-BLAN-0269-01) and the Fondation pour la Recherche Médicale; and Y.I. is supported by a grant from the French Ministry of Research. The authors thank the reviewers for improving the format of this Review and apologize to those whose data could not be cited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédéric Baudat or Bernard de Massy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Homologous chromosomes

The two parental chromosomes that are present in a diploid cell.

Crossovers

Reciprocal recombination events that lead to the re-association of genetic markers located on both sides of the crossover point.

Non-crossovers

Recombination events that are detected as gene conversion events without the exchange of flanking markers.

Gene conversion

Unidirectional transfer of genetic information from a donor to a receiver DNA molecule. During meiotic recombination, this refers to the unidirectional transfer of genetic information from one chromosome to the homologous chromosome.

DNA double-strand break

The event, catalysed by the topoisomerase-like meiotic recombination protein SPO11, that initiates the molecular mechanism of recombination during meiosis.

Linkage disequilibrium

(LD). The preferential association of specific alleles between linked markers.

Haplotyping

The characterization of haplotypes — the combination of linked alleles that are transmitted together to the progeny.

Congenic

Pertainint to the situation in which two strains share the same genetic background in the whole genome except at one locus or chromosomal region.

Pseudo-autosomal region

The region of homology between the sex chromosomes.

Positive selection

The evolution force that favours the increase in frequency of advantageous alleles in a population.

Minisatellite

A tandem nucleotide repeat of a 10–100 bp-long unit. The sequence encoding the PR domain-containing 9 (PRDM9) zinc finger array is a minisatellite of 10–15 repeats of an 84-bp unit.

Topoisomerase

An enzyme involved in regulating DNA topology by catalysing DNA breakage and resealing. The DNA breaks generated are either single stranded for type I topoisomerases or double stranded for type II topoisomerases.

Bivalent

A pair of homologues that are associated by synapsis or chiasmata, which are the cytological manifestation of crossover.

Sister chromatids

Pairs of two chromatids that result from a round of DNA replication.

Synaptonemal complex

The protein structure that stabilizes homologous chromosome axes in meiotic prophase during the process named synapsis.

Positive crossover interference

The mechanism leading to a nonrandom distribution of crossovers, in which the presence of a crossover decreases the probability of additional crossover events occuring nearby.

Lateral element

The proteinaceous structure that defines the chromosome axis at the beginning of meiotic prophase.

Cohesin

A protein that holds sister chromatids together.

Non-allelic homologous recombination

(NAHR). The homologous recombination between identical or quasi-identical sequences that are not allelic. It can lead to chromosomal rearrangements such as deletion, duplication or inversion of sequences and translocations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudat, F., Imai, Y. & de Massy, B. Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 14, 794–806 (2013). https://doi.org/10.1038/nrg3573

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing