Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Enhancers: five essential questions

It is estimated that the human genome contains hundreds of thousands of enhancers, so understanding these gene-regulatory elements is a crucial goal. Several fundamental questions need to be addressed about enhancers, such as how do we identify them all, how do they work, and how do they contribute to disease and evolution? Five prominent researchers in this field look at how much we know already and what needs to be done to answer these questions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Visel, A., Rubin, E. M. & Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohrs, M. et al. Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nature Immunol. 2, 842–847 (2001).

    Article  CAS  Google Scholar 

  3. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Visel, A. et al. Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nature Genet. 40, 158–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt, D. et al. Five-vertebrate ChIP–seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blow, M. J. et al. ChIP–seq identification of weakly conserved heart enhancers. Nature Genet. 42, 806–810 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Visel, A. et al. ChIP–seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Dorschner, M. O. et al. High-throughput localization of functional elements by quantitative chromatin profiling. Nature Methods 1, 219–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642–654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  15. May, D. et al. Large-scale discovery of enhancers from human heart tissue. Nature Genet. 44, 89–93 (2011).

    Article  PubMed  Google Scholar 

  16. Williamson, I. et al. Anterior–posterior differences in HoxD chromatin topology in limb development. Development 139, 3157–3167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becker, N. A., Peters, J. P. & Maher, L. J. Mechanism of promoter repression by Lac repressor–DNA loops. Nucleic Acids Res. 41, 156–166 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Hammar, P. et al. The lac repressor displays facilitated diffusion in living cells. Science 336, 1595–1598 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Hatzis, P. & Talianidis, I. Dynamics of enhancer–promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Bulger, M. & Groudine, M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13, 2465–2477 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Krivega, I. & Dean, A. Enhancer and promoter interactions—long distance calls. Curr. Opin. Genet. Dev. 22, 79–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Koch, F. et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nature Struct. Mol. Biol. 18, 956–963 (2011).

    Article  CAS  Google Scholar 

  25. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stumpf, M. et al. The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc. Natl Acad. Sci. USA 103, 18504–18509 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vakoc, C. R. et al. Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S.-I., Bultman, S. J., Kiefer, C. M., Dean, A. & Bresnick, E. H. BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc. Natl Acad. Sci. USA 106, 2259–2264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Z., Scannell, D. R., Eisen, M. B. & Tjian, R. Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 146, 720–731 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sawado, T., Halow, J. & Bender, M. A. & Groudine, M. The β-globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev. 17, 1009–1018 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song, S.-H. et al. Multiple functions of Ldb1 required for β-globin activation during erythroid differentiation. Blood 116, 2356–2364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, C., Garruss, A. S., Luo, Z., Guo, F. & A. Shilatifard. The RNA Pol II elongation factor Ell3 marks enhancers in ES cells and primes future gene activation. Cell 152, 144–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 17 Feb 2013 (10.1038/nature11884).

  37. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chepelev, I. Wei, G., Wangsa, D., Tang, Q. & Zhao, K. Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization. Cell Res. 22, 490–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanyal, A. & Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature. 489, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet. 36, 1065–1071 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Ragoczy, T., Bender, M. A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. 20, 1447–1454 (2006).

  42. Ward, L. D. & Kellis, M. Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 337, 1675–1678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kleinjan, D. A. & Lettice, L. A. Long-range gene control and genetic disease. Adv. Genet. 61, 339–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lettice, L. A. et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12, 1725–1735 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Sakabe, N. J., Savic, D. & Nobrega, M. A. Transcriptional enhancers in development and disease. Genome Biol. 13, 238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smemo, S. et al. Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease. Hum. Mol. Genet. 21, 3255–3263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Gobbi, M. et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312, 1215–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Pomerantz, M. M. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nature Genet. 41, 882–884 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Wasserman, N. F., Aneas, I. & Nobrega, M. A. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res. 20, 1191–1197 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature 470, 264–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boj, S. F. et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151, 1595–1607 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Savic, D., Park, S. Y., Bailey, K. A., Bell, G. I. & Nobrega, M. A. In vitro scan for enhancers at the TCF7L2 locus. Diabetologia 56, 121–125 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Savic, D. et al. Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res. 21, 1417–1425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Panne, D., Maniatis, T. & Harrison, S. C. An atomic model of the interferon-β enhanceosome. Cell 129, 1111–1123 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bejerano, G., Haussler, D. & Blanchette, M. Into the heart of darkness: large-scale clustering of human non-coding DNA. Bioinformatics 20 (Suppl. 1), i40–i48 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Britten, R. J. & Davidson, E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46, 111–138 (1971).

    Article  CAS  PubMed  Google Scholar 

  61. Rebollo, R., Romanish, M. T. & Mager, D. L. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet. 46, 21–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McLean, C. & Bejerano, G. Dispensability of mammalian DNA. Genome Res. 18, 1743–1751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hiller, M., Schaar, B. T. & Bejerano, G. Hundreds of conserved non-coding genomic regions are independently lost in mammals. Nucleic Acids Res. 40, 11463–11476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clarke, S. L. et al. Human developmental enhancers conserved between deuterostomes and protostomes. PLoS Genet. 8, e1002852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Royo, J. L. et al. Transphyletic conservation of developmental regulatory state in animal evolution. Proc. Natl Acad. Sci. USA 108, 14186–14191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature Rev. Genet. 13, 59–69 (2012).

    Article  CAS  Google Scholar 

  68. Levine, M. Transcriptional enhancers in animal development and evolution. Curr. Biol. 20, R754–R763 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fang, L., Ahn, J. K., Wodziak, D. & Sibley, E. The human lactase persistence-associated SNP -13910*T enables in vivo functional persistence of lactase promoter-reporter transgene expression. Hum. Genet. 131, 1153–1159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ohno, S. Evolution by Gene Duplication (Springer-Verlag, 1975).

    Google Scholar 

  71. O'Bleness, M., Searles, V. B., Varki, A., Gagneux, P. & Sikela, J. M. Evolution of genetic and genomic features unique to the human lineage. Nature Rev. Genet. 13, 853–866 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    CAS  PubMed  Google Scholar 

  73. Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shim, S., Kwan, K. Y., Li, M., Lefebvre, V. & Sestan, N. Cis-regulatory control of corticospinal system development and evolution. Nature 486, 74–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hiller, M. et al. A 'forward genomics' approach links genotype to phenotype using independent phenotypic losses among related species. Cell Rep. 2, 817–823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.A.P. was supported by US National Human Genome Research Institute grants R01HG003988 and U54HG006997. Research was conducted at the E.O. Lawrence Berkeley National Laboratory and carried out under US Department of Energy Contract DE-AC02-05CH11231, University of California. A.D. acknowledges support for research in her laboratory by the Intramural Program of the US National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH). M.A.N. is currently supported by the US National Institutes of Health, grants R01DK093972 and R01HL114010. G.B. thanks members of his laboratory, past and present, for their wisdom and company.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Len A. Pennacchio, Wendy Bickmore, Ann Dean, Marcelo A. Nobrega or Gill Bejerano.

Related links

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennacchio, L., Bickmore, W., Dean, A. et al. Enhancers: five essential questions. Nat Rev Genet 14, 288–295 (2013). https://doi.org/10.1038/nrg3458

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3458

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research