Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional consequences of developmentally regulated alternative splicing

Key Points

  • A large fraction of genes in worms, flies and vertebrates express multiple mRNAs by alternative splicing. This produces extensive mRNA structural diversity that ultimately affects protein coding potential as well as mRNA cis-acting elements that are determinative for translation, mRNA stability and mRNA intracellular localization.

  • Global analyses of alternative splicing regulation during periods of biological transition, such as during development, have revealed coordinated and conserved networks of alternative splicing.

  • Several splicing regulatory networks controlled by individual RNA-binding proteins have been identified by combining recent advances in genome-wide analyses of alternative splicing with the identification of RNA binding sites in vivo.

  • A high proportion of RNA-binding proteins that regulate alternative splicing are themselves regulated by alternative splicing and are subject to auto- and crossregulatory feedback. This type of regulation includes alternative splicing linked with nonsense-mediated decay (AS–NMD), which results in mRNA downregulation.

  • Diverse physiological processes are regulated in a determinative fashion by alternative splicing patterns, including meiosis in budding yeast, neuronal arborization in the Drosophila melanogaster brain, and stem cell determination in vertebrates.

  • The regulation of gene expression by alternative splicing is intricately linked with transcription, the epigenetic state of chromatin, and subsequent RNA processing events, such as 3′ end formation, mRNA export and mRNA translation efficiency.

Abstract

Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodelling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and those with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is used by other regulatory mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of splicing regulation during early meiosis in Saccharomyces cerevisiae.
Figure 2: Integration of alternative splicing with epithelial-to-mesenchymal transitions.
Figure 3: Coordinated alternative splicing changes drive fetal-to-adult transitions during postnatal heart development.

Similar content being viewed by others

References

  1. Graveley, B. R. et al. The developmental transcriptome of Drosophila melanogaster. Nature 471, 473–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Ramani, A. K. et al. Genome-wide analysis of alternative splicing in Caenorhabditis elegans. Genome Res. 21, 342–348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerstein, M. B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Licatalosi, D. D. & Darnell, R. B. RNA processing and its regulation: global insights into biological networks. Nature Rev. Genet. 11, 75–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Komili, S. & Silver, P. A. Coupling and coordination in gene expression processes: a systems biology view. Nature Rev. Genet. 9, 38–48 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Isken, O. & Maquat, L. E. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nature Rev. Genet. 9, 699–712 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Pickrell, J. K., Pai, A. A., Gilad, Y. & Pritchard, J. K. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 6, e1001236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Melamud, E. & Moult, J. Stochastic noise in splicing machinery. Nucleic Acids Res. 37, 4873–4886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lopez, A. J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 32, 279–305 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Salz, H. K. Sex determination in insects: a binary decision based on alternative splicing. Curr. Opin. Genet. Dev. (2011).

  14. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Engebrecht, J. A., Voelkel-Meiman, K. & Roeder, G. S. Meiosis-specific RNA splicing in yeast. Cell 66, 1257–1268 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Xing, Y. & Lee, C. Alternative splicing and RNA selection pressure — evolutionary consequences for eukaryotic genomes. Nature Rev. Genet. 7, 499–509 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Keren, H., Lev-Maor, G. & Ast, G. Alternative splicing and evolution: diversification, exon definition and function. Nature Rev. Genet. 11, 345–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    CAS  PubMed  Google Scholar 

  20. Chen, M. & Manley, J. L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nature Rev. Mol. Cell Biol. 10, 741–754 (2009).

    Article  CAS  Google Scholar 

  21. Calarco, J. A., Zhen, M. & Blencowe, B. J. Networking in a global world: Establishing functional connections between neural splicing regulators and their target transcripts. RNA 17, 775–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lipscombe, D. Neuronal proteins custom designed by alternative splicing. Curr. Opin. Neurobiol. 15, 358–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Witten, J. T. & Ule, J. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27, 89–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuroyanagi, H., Ohno, G., Mitani, S. & Hagiwara, M. The Fox-1 family and SUP-12 coordinately regulate tissue-specific alternative splicing in vivo. Mol. Cell. Biol. 27, 8612–8621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohno, G., Hagiwara, M. & Kuroyanagi, H. STAR family RNA-binding protein ASD-2 regulates developmental switching of mutually exclusive alternative splicing in vivo. Genes Dev. 22, 360–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl Acad. Sci. USA 105, 20333–20338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bland, C. S. et al. Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res. 38, 7651–7664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Modrek, B. & Lee, C. J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nature Genet. 34, 177–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Yeo, G. W., Van Nostrand, E., Holste, D., Poggio, T. & Burge, C. B. Identification and analysis of alternative splicing events conserved in human and mouse. Proc. Natl Acad. Sci. USA 102, 2850–2855 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ip, J. Y. et al. Global analysis of alternative splicing during T-cell activation. RNA 13, 563–572 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McKee, A. E. et al. Exon expression profiling reveals stimulus-mediated exon use in neural cells. Genome Biol. 8, R159 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ares, M. Jr, Grate, L. & Pauling, M. H. A handful of intron-containing genes produces the lion's share of yeast mRNA. RNA 5, 1138–1139 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davis, C. A., Grate, L., Spingola, M. & Ares, M. Jr. Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Res. 28, 1700–1706 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Juneau, K., Palm, C., Miranda, M. & Davis, R. W. High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing. Proc. Natl Acad. Sci. USA 104, 1522–1527 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Munding, E. M. et al. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae. Genes Dev. 24, 2693–2704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiu, Z. R., Shuman, S. & Schwer, B. An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre-mRNAs. Nucleic Acids Res. 39, 5633–5646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Engebrecht, J. & Roeder, G. S. MER1, a yeast gene required for chromosome pairing and genetic recombination, is induced in meiosis. Mol. Cell. Biol. 10, 2379–2389 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scherrer, F. W. Jr. & Spingola, M. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention. RNA 12, 1361–1372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spingola, M., Armisen, J. & Ares, M. Jr. Mer1p is a modular splicing factor whose function depends on the conserved U2 snRNP protein Snu17p. Nucleic Acids Res. 32, 1242–1250 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiu, Z. R., Schwer, B. & Shuman, S. Determinants of Nam8-dependent splicing of meiotic pre-mRNAs. Nucleic Acids Res. 39, 3427–3445 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwer, B., Erdjument-Bromage, H. & Shuman, S. Composition of yeast snRNPs and snoRNPs in the absence of trimethylguanosine caps reveals nuclear cap binding protein as a gained U1 component implicated in the cold-sensitivity of tgs1 Δ cells. Nucleic Acids Res. 39, 6715–6728 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwerk, C. & Schulze-Osthoff, K. Regulation of apoptosis by alternative pre-mRNA splicing. Mol. Cell 19, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Moore, M. J., Wang, Q., Kennedy, C. J. & Silver, P. A. An alternative splicing network links cell-cycle control to apoptosis. Cell 142, 625–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Long, J. C. & Caceres, J. F. The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nature Struct. Mol. Biol. 14, 185–193 (2007).

    Article  CAS  Google Scholar 

  46. Li, X. & Manley, J. L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Shin, C. & Manley, J. L. The SR protein SRp38 represses splicing in M phase cells. Cell 111, 407–417 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Ahn, E. Y. et al. SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol. Cell 42, 185–198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pritsker, M., Doniger, T. T., Kramer, L. C., Westcot, S. E. & Lemischka, I. R. Diversification of stem cell molecular repertoire by alternative splicing. Proc. Natl Acad. Sci. USA 102, 14290–14295 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, J. Q. et al. Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc. Natl Acad. Sci. USA 107, 5254–5259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Salomonis, N. et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc. Natl Acad. Sci. USA 107, 10514–10519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yeo, G. W. et al. Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLoS Comput. Biol. 3, 1951–1967 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Brandenberger, R. et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nature Biotech. 22, 707–716 (2004).

    Article  Google Scholar 

  54. Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods 5, 613–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Salomonis, N. et al. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLoS Comput. Biol. 5, e1000553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang, F. et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis. Cell Stem Cell 6, 468–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, X. & Dai, J. Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 28, 885–893 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, X. et al. Alternative translation of OCT4 by an internal ribosome entry site and its novel function in stress response. Stem Cells 27, 1265–1275 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Theodorou, E. et al. A high throughput embryonic stem cell screen identifies Oct-2 as a bifunctional regulator of neuronal differentiation. Genes Dev. 23, 575–588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mayshar, Y. et al. Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells 26, 767–774 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Lin, H. et al. Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. J. Cell Physiol. 216, 458–468 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Yeo, G. W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nature Struct. Mol. Biol. 16, 130–137 (2009).

    Article  CAS  Google Scholar 

  65. Rao, S. et al. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol. Cell Biol. 30, 5364–5380 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rosa, A. & Brivanlou, A. H. A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J. 30, 237–248 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Boutz, P. L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spellman, R., Llorian, M. & Smith, C. W. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol. Cell 27, 420–434 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grabowski, P. Alternative splicing takes shape during neuronal development. Curr. Opin. Genet. Dev. (2011).

  71. Calarco, J. A. et al. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 138, 898–910 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Rev. Cancer 9, 265–273 (2009).

    Article  CAS  Google Scholar 

  75. Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Ghigna, C. et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol. Cell 20, 881–890 (2005). This paper demonstrates a direct correlation between overexpression of SRSF1, aberrant splicing of the RON tyrosine kinase receptor to a constitutively active form and aberrant migratory activity of cells consistent with activated RON.

    Article  CAS  PubMed  Google Scholar 

  77. Warzecha, C. C. et al. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J. 29, 3286–3300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Valacca, C. et al. Sam68 regulates EMT through alternative splicing-activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene. J. Cell Biol. 191, 87–99 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brown, R. L. et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J. Clin. Invest. 121, 1064–1074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  81. Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signalling regulators. Nature Rev. Mol. Cell Biol. 4, 33–45 (2003).

    Article  CAS  Google Scholar 

  82. Wagner, E. J. & Garcia-Blanco, M. A. RNAi-mediated PTB depletion leads to enhanced exon definition. Mol. Cell 10, 943–949 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. De Moerlooze, L. et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127, 483–492 (2000).

    CAS  PubMed  Google Scholar 

  84. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010). This paper demonstrated a direct connection between histone modification and regulated alternative splicing by the RNA-binding protein and an adaptor protein that recognizes the histone modification code.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Olson, E. N. & Schneider, M. D. Sizing up the heart: development redux in disease. Genes Dev. 17, 1937–1956 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Srivastava, D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Ladd, A. N., Stenberg, M. G., Swanson, M. S. & Cooper, T. A. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev. Dyn. 233, 783–793 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Ladd, A. N., Charlet, N. & Cooper, T. A. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol. Cell. Biol. 21, 1285–1296 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kalsotra, A., Wang, K., Li, P. F. & Cooper, T. A. MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development. Genes Dev. 24, 653–658 (2010). This paper identifies a regulatory hierarchy during postnatal heart development in which miRNA-regulated expression of splicing regulators coordinates developmental alternative splicing transitions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koshelev, M., Sarma, S., Price, R. E., Wehrens, X. H. & Cooper, T. A. Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum. Mol. Genet. 19, 1066–1075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ladd, A. N., Taffet, G., Hartley, C., Kearney, D. L. & Cooper, T. A. Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol. Cell. Biol. 25, 6267–6278 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ding, J. H. et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 23, 885–896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu, X. et al. ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59–72 (2005). This paper demonstrates that a phenotypic feature of SRSF1 heart-specific knockout is due to altered splicing of a specific target gene.

    Article  CAS  PubMed  Google Scholar 

  94. Feng, Y. et al. SRp38 regulates alternative splicing and is required for Ca2+ handling in the embryonic heart. Dev. Cell 16, 528–538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, J., Takagaki, Y. & Manley, J. L. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev. 10, 2588–2599 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Neves, G., Zucker, J., Daly, M. & Chess, A. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nature Genet. 36, 240–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Zhan, X. L. et al. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 43, 673–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Hattori, D. et al. Dscam diversity is essential for neuronal wiring and self-recognition. Nature 449, 223–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hattori, D. et al. Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature 461, 644–648 (2009). Using homologous recombination to express a limited number of DSCAM1 isoforms in Drosophila melanogaster , this paper shows that thousands of DSCAM1 isoforms are required to fully discriminate self from non-self neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, Z., Gore, B. B., Long, H., Ma, L. & Tessier-Lavigne, M. Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron 58, 325–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Yang, Y. Y., Yin, G. L. & Darnell, R. B. The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc. Natl Acad. Sci. USA 95, 13254–13259 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, C. et al. Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science 329, 439–443 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brooks, A. N. et al. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Res. 21, 193–202 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Irimia, M. et al. Stepwise assembly of the Nova-regulated alternative splicing network in the vertebrate brain. Proc. Natl Acad. Sci. USA 108, 5319–5324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Han, J. et al. SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons. Mol. Cell Biol. 31, 793–802 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nature Genet. 37, 844–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R. B. Nova2 regulates neuronal migration through an RNA switch in disabled-1 signaling. Neuron 66, 848–858 (2010). This paper demonstrates that the splicing regulator NOVA2 regulates a developmental isoform transition in the reelin pathway that is required for proper cell migration and layering of cortical neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ruggiu, M. et al. Rescuing Z+ agrin splicing in Nova null mice restores synapse formation and unmasks a physiologic defect in motor neuron firing. Proc. Natl Acad. Sci. USA 106, 3513–3518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gehman, L. T. et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nature Genet. 43, 706–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Bhalla, K. et al. The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene. J. Hum. Genet. 49, 308–311 (2004).

    Article  PubMed  Google Scholar 

  111. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Heyd, F. & Lynch, K. W. DEGRADE, MOVE, REGROUP: signaling control of splicing proteins. Trends Biochem. Sci. 36, 397–404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zacharias, D. A. & Strehler, E. E. Change in plasma membrane Ca2+-ATPase splice-variant expression in response to a rise in intracellular Ca2+. Curr. Biol. 6, 1642–1652 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Li, Q., Lee, J. A. & Black, D. L. Neuronal regulation of alternative pre-mRNA splicing. Nature Rev. Neurosci. 8, 819–831 (2007).

    Article  CAS  Google Scholar 

  116. Xie, J. & Black, D. L. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410, 936–939 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Xie, J., Jan, C., Stoilov, P., Park, J. & Black, D. L. A consensus CaMK IV-responsive RNA sequence mediates regulation of alternative exons in neurons. RNA 11, 1825–1834 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, J. A. et al. Depolarization and CaM kinase IV modulate NMDA receptor splicing through two essential RNA elements. PLoS Biol. 5, e40 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yu, J. et al. The heterogeneous nuclear ribonucleoprotein L is an essential component in the Ca2+/calmodulin-dependent protein kinase IV-regulated alternative splicing through cytidine-adenosine repeats. J. Biol. Chem. 284, 1505–1513 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. An, P. & Grabowski, P. J. Exon silencing by UAGG motifs in response to neuronal excitation. PLoS Biol. 5, e36 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, J. A., Tang, Z. Z. & Black, D. L. An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons. Genes Dev. 23, 2284–2293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pleiss, J. A., Whitworth, G. B., Bergkessel, M. & Guthrie, C. Rapid, transcript-specific changes in splicing in response to environmental stress. Mol. Cell 27, 928–937 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yost, H. J. & Lindquist, S. RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45, 185–193 (1986).

    Article  CAS  PubMed  Google Scholar 

  124. Jolly, C., Vourc'h, C., Robert-Nicoud, M. & Morimoto, R. I. Intron-independent association of splicing factors with active genes. J. Cell Biol. 145, 1133–1143 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Takechi, H., Hosokawa, N., Hirayoshi, K. & Nagata, K. Alternative 5′ splice site selection induced by heat shock. Mol. Cell Biol. 14, 567–575 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shin, C., Feng, Y. & Manley, J. L. Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427, 553–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Zhong, X. Y., Ding, J. H., Adams, J. A., Ghosh, G. & Fu, X. D. Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes Dev. 23, 482–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Biamonti, G. & Caceres, J. F. Cellular stress and RNA splicing. Trends Biochem. Sci. 34, 146–153 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Chandler, D. S., Singh, R. K., Caldwell, L. C., Bitler, J. L. & Lozano, G. Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res. 66, 9502–9508 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Dutertre, M. et al. Cotranscriptional exon skipping in the genotoxic stress response. Nature Struct. Mol. Biol. 17, 1358–1366 (2010).

    Article  CAS  Google Scholar 

  132. Munoz, M. J. et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137, 708–720 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Paronetto, M. P., Minana, B. & Valcarcel, J. The ewing sarcoma protein regulates DNA damage-induced alternative splicing. Mol. Cell 43, 353–368 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Saltzman, A. L., Pan, Q. & Blencowe, B. J. Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev. 25, 373–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Corioni, M., Antih, N., Tanackovic, G., Zavolan, M. & Kramer, A. Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing. Nucleic Acids Res. 39, 1868–1879 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Yu, Y. et al. Dynamic regulation of alternative splicing by silencers that modulate 5′ splice site competition. Cell 135, 1224–1236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pleiss, J. A., Whitworth, G. B., Bergkessel, M. & Guthrie, C. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol. 5, e90 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Park, J. W., Parisky, K., Celotto, A. M., Reenan, R. A. & Graveley, B. R. Identification of alternative splicing regulators by RNA interference in Drosophila. Proc. Natl Acad. Sci. USA 101, 15974–15979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Clark, T. A., Sugnet, C. W. & Ares, M. Jr. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296, 907–910 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Mordes, D. et al. Pre-mRNA splicing and retinitis pigmentosa. Mol. Vis. 12, 1259–1271 (2006).

    CAS  PubMed  Google Scholar 

  141. Soonpaa, M. H. & Field, L. J. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83, 15–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Tang, F., Lao, K. & Surani, M. A. Development and applications of single-cell transcriptome analysis. Nature Methods 8, S6–S11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Barash, Y. et al. Deciphering the splicing code. Nature 465, 53–59 (2010). This paper used computational integration of hundreds of features to derive a splicing code of sequence elements that are predictive of tissue specific splicing.

    Article  CAS  PubMed  Google Scholar 

  145. Gabut, M., Chaudhry, S. & Blencowe, B. J. SnapShot: the splicing regulatory machinery. Cell 133, 192–192.e1 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nature Struct. Mol. Biol. 17, 909–915 (2010).

    Article  CAS  Google Scholar 

  148. Darnell, R. B. HITS-CLIP: panoramic views of protein–RNA regulation in living cells. Wiley Interdiscip. Rev. RNA 1, 266–286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Blencowe, B. J., Ahmad, S. & Lee, L. J. Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev. 23, 1379–1386 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008). This paper presents an in vivo map for the neuron-specific RNA-binding protein NOVA2. The map was generated using high-throughput sequencing and revealed a network of directly regulated genes. Correlations between the positions of binding sites and positive or negative effects on splicing were also identified.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. McGlincy, N. J. & Smith, C. W. Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem. Sci. 33, 385–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Saltzman, A. L. et al. Regulation of multiple core spliceosomal proteins by alternative splicing-coupled nonsense-mediated mRNA decay. Mol. Cell. Biol. 28, 4320–4330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Ni, J. Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007). Together with reference 153, this paper demonstrated a highly conserved gene structure through which the expression of the SR and hnRNP families of splicing regulators provide a link between alternative splicing and NMD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Maquat, L. E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nature Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  Google Scholar 

  156. Smith, C. W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. David, C. J., Chen, M., Assanah, M., Canoll, P. & Manley, J. L. hnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Clower, C. V. et al. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl Acad. Sci. USA 107, 1894–1899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Seitz, H. Redefining microRNA targets. Curr. Biol. 19, 870–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B. & Carstens, R. P. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell 33, 591–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Baraniak, A. P., Chen, J. R. & Garcia-Blanco, M. A. Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Mol. Cell. Biol. 26, 1209–1222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Fagnani, M. et al. Functional coordination of alternative splicing in the mammalian central nervous system. Genome Biol. 8, R108 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tomczak, K. K. et al. Expression profiling and identification of novel genes involved in myogenic differentiation. FASEB J. 18, 403–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. LaGamba, D., Nawshad, A. & Hay, E. D. Microarray analysis of gene expression during epithelial-mesenchymal transformation. Dev. Dyn. 234, 132–142 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.A.C. is supported by the US National Institutes of Health (AR045653, AR060733, HL045565) and the Muscular Dystrophy Association (156780). A.K. is supported by a Scientist Development Grant from the American Heart Association (11SDG4980011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Thomas A. Cooper's homepage

EntrezGene

Flybase

modEncode

Saccharomyces Genome Database

Wormbase

Glossary

Transcriptomes

The transcriptome technically refers to all of the RNA in a cell; however, the term is often used to describe the polyadenylated RNAs transcribed by RNA polymerase II, which are selected for analysis by oligo(dT).

RNA sequencing

(RNA-seq). High-throughput shotgun sequencing of cDNA to obtain the sequence of the transcriptome.

mRNA structural complexity

The number and ratio of different transcripts produced from each gene. It is one component of mRNA complexity, along with the number of genes that produce transcripts and the abundance of the transcripts from each gene.

Nonsense-mediated decay

(NMD). An mRNA surveillance mechanism that degrades mRNAs containing nonsense mutations to prevent the expression of truncated or erroneous proteins.

Spliceosome

The complex and conserved nuclear machinery that removes introns. The spliceosome contains five small uridylate-rich small nuclear RNAs (UsnRNAs) and ~150 proteins.

SR proteins

A highly conserved family of RNA-binding proteins that contain arginine/serine-rich domains. They function in constitutive as well as alternative splicing and are primarily splicing activators.

CLIP

A biochemical technique that uses ultraviolet crosslinking of protein and RNA in vivo followed by immunoprecipitation to identify direct protein–RNA interaction sites in living cells.

Core pluripotency factors

A set of transcription factors (including OCT4, NANOG, SOX2 and TCF3) that form a core transcriptional circuit to maintain the pluripotent state of embryonic stem cells.

MicroRNA

(miRNA). An evolutionarily conserved small non-coding RNA (~22 nucleotides long) that silences gene expression by degrading or inhibiting translation of mRNA transcripts in a sequence-specific manner.

Epithelial-to-mesenchymal transitions

(EMTs). Phenotypic conversions that disrupt the polarity of epithelial cells to establish invasive mesenchymal features through alterations in cytoskeletal organization, cell adhesion and the extracellular matrix.

Histone code

Post-translational modifications of histone proteins that regulate the accessibility of chromatin-bound DNA to the general transcription machinery to provide an instructive code for cell- and tissue-specific gene expression.

Dicer1

A gene encoding the endoribonuclease Dicer that cleaves double-stranded RNAs to produce small interfering RNAs and microRNAs with a two-nucleotide overhang at the 3′ end.

Arborization

A tree-like branching process through which a neuron expands its dendritic coverage in three-dimensional space to integrate multiple synaptic or sensory inputs.

Commissural neurons

Neurons that cross the midline of the brain to connect the right and left brain hemispheres.

Heterogeneous nuclear ribonucleoprotein

A conserved family of RNA-binding proteins, many of which are highly abundant, that tend to repress splicing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalsotra, A., Cooper, T. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 12, 715–729 (2011). https://doi.org/10.1038/nrg3052

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing