Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Condensin and cohesin complexity: the expanding repertoire of functions

Key Points

  • Cohesin contributes to intrachromosomal loops that regulate metazoan gene expression by constraining interactions between promoter and enhancer elements. These structures can be subject to regulation during development.

  • Condensin binds yeast tRNA genes to promote their aggregation at the nucleolus and can inhibit interactions between homologous chromosomes during interphase.

  • The Caenorhabditis elegans dosage compensation complex serves as a paradigm for the regulation of gene expression by condensin. The complex regulates transcription across an entire sex chromosome but does not always bind in proximity to regulatory targets.

  • Cohesin is required for the acquisition of cell-lineage-specific traits in the Drosophila melanogaster nervous system, and this role does not require passage through the cell cycle.

  • Meiosis-specific functions of condensin and cohesin abound. Condensin regulates the number and distribution of double-strand breaks and crossovers, whereas cohesin is essential for the assembly of a structure called the axial element, which forms on meiotic chromosomes and is important for proper association of homologous chromosomes and for crossover recombination.

  • Specialization of condensin and cohesin function is achieved through swapping of homologous subunits to create molecular machines with similar architecture but distinct biological roles.

Abstract

Condensin and cohesin complexes act in diverse nuclear processes in addition to their widely known roles in chromosome compaction and sister chromatid cohesion. Recent work has elucidated the contribution of condensin and cohesin to interphase genome organization, control of gene expression, metazoan development and meiosis. Despite these wide-ranging functions, several themes have come to light: both complexes establish higher-order chromosome structure by inhibiting or promoting interactions between distant genomic regions, both complexes influence the chromosomal association of other proteins, and both complexes achieve functional specialization by swapping homologous subunits. Emerging data are expanding the range of processes in which condensin and cohesin are known to participate and are enhancing our knowledge of how chromosome architecture is regulated to influence numerous cellular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dosage compensation in Caenorhabditis elegans.
Figure 2: Cohesin function in gene expression.

Similar content being viewed by others

References

  1. De Piccoli, G., Torres-Rosell, J. & Aragon, L. The unnamed complex: what do we know about Smc5–Smc6? Chromosome Res. 17, 251–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Hudson, D. F., Marshall, K. M. & Earnshaw, W. C. Condensin: architect of mitotic chromosomes. Chromosome Res. 17, 131–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Hirano, T. At the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol. 7, 311–322 (2006).

    Article  CAS  Google Scholar 

  5. Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Rubio, E. D. et al. CTCF physically links cohesin to chromatin. Proc. Natl Acad. Sci. USA 105, 8309–8314 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stedman, W. et al. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 27, 654–666 (2008). References 5–8 identified extensive overlaps between the chromosomal binding sites of cohesin and the mammalian insulator protein CTCF, and showed that cohesin contributes to the gene regulatory functions of CTCF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartkuhn, M. et al. Active promoters and insulators are marked by the centrosomal protein 190. EMBO J. 28, 877–888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ling, J. Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hadjur, S. et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hou, C., Dale, R. & Dean, A. Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc. Natl Acad. Sci. USA 107, 3651–3656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mishiro, T. et al. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J. 28, 1234–1245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nativio, R. et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2–H19 locus. PLoS Genet. 5, e1000739 (2009). References 12–15 studied the effects of cohesin depletion in cultured cells on interphase chromosome looping and transcription.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Wendt, K. S. & Peters, J. M. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17, 201–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res. 10 Mar 2010 (doi:10.1101/gr.100479.109).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Donze, D., Adams, C. R., Rine, J. & Kamakaka, R. T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13, 698–708 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Valenzuela, L., Dhillon, N., Dubey, R. N., Gartenberg, M. R. & Kamakaka, R. T. Long-range communication between the silencers of HMR. Mol. Cell. Biol. 28, 1924–1935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nature Genet. 42, 53–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Haeusler, R. A., Pratt-Hyatt, M., Good, P. D., Gipson, T. A. & Engelke, D. R. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev. 22, 2204–2214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thompson, M., Haeusler, R. A., Good, P. D. & Engelke, D. R. Nucleolar clustering of dispersed tRNA genes. Science 302, 1399–1401 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, B. D. & Strunnikov, A. Transcriptional homogenization of rDNA repeats in the episome-based nucleolus induces genome-wide changes in the chromosomal distribution of condensin. Plasmid 59, 45–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. D'Ambrosio, C. et al. Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev. 22, 2215–2227 (2008). This paper and reference 22 provided evidence that the yeast condensin complex binds tRNA genes through interactions with the RNAPIII transcription factor TFIIIC and is required for their aggregation at the nucleolus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iwasaki, O., Tanaka, A., Tanizawa, H., Grewal, S. I. & Noma, K. Centromeric localization of dispersed Pol III genes in fission yeast. Mol. Biol. Cell 21, 254–265 (2009).

    Article  PubMed  Google Scholar 

  27. Tsang, C. K., Wei, Y. & Zheng, X. F. Compacting DNA during the interphase: condensin maintains rDNA integrity. Cell Cycle 6, 2213–2218 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi, T. Strategies to maintain the stability of the ribosomal RNA gene repeats — collaboration of recombination, cohesion, and condensation. Genes Genet. Syst. 81, 155–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Gard, S. et al. Cohesinopathy mutations disrupt the subnuclear organization of chromatin. J. Cell Biol. 187, 455–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hartl, T. A., Smith, H. F. & Bosco, G. Chromosome alignment and transvection are antagonized by condensin II. Science 322, 1384–1387 (2008). This paper showed that the D. melanogaster condensin II complex inhibits transvection and promotes the disassembly of polytene chromosomes, and can therefore antagonize interactions between homologous chromosomes during interphase. These findings raise interesting parallels between condensin function during mitosis and during interphase.

    Article  CAS  PubMed  Google Scholar 

  32. Chuang, P. T., Albertson, D. G. & Meyer, B. J. DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79, 459–474 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Meyer, B. J. X-Chromosome dosage compensation. In WormBook (ed. The C. elegans Research Community) http://www.wormbook.org, doi:10.1895/wormbook.1.8.1 (2005).

    Google Scholar 

  34. Meyer, B. Targeting X chromosomes for repression. Curr. Opin. Genet. Dev. 8 Apr 2010 (doi:10.1016/j.gde.2010.03.008).

    Article  CAS  Google Scholar 

  35. Jans, J. et al. A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome. Genes Dev. 23, 602–618 (2009). This paper combined ChIP–chip mapping with functional assays to identify two classes of binding sites for the C. elegans DCC: those that recruit the complex in an autonomous, sequence-dependent manner and those that bind the DCC only when part of an intact X chromosome. The paper also correlated DCC binding with function, providing evidence that the DCC influences transcription at long range.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ercan, S. et al. X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nature Genet. 39, 403–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. McDonel, P., Jans, J., Peterson, B. K. & Meyer, B. J. Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature 444, 614–618 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ercan, S., Dick, L. L. & Lieb, J. D. The C. elegans dosage compensation complex propagates dynamically and independently of X chromosome sequence. Curr. Biol. 19, 1777–1787 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573–578 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cobbe, N., Savvidou, E. & Heck, M. M. Diverse mitotic and interphase functions of condensins in Drosophila. Genetics 172, 991–1008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dej, K. J., Ahn, C. & Orr-Weaver, T. L. Mutations in the Drosophila condensin subunit dCAP-G: defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase. Genetics 168, 895–906 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhalla, N., Biggins, S. & Murray, A. W. Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol. Biol. Cell 13, 632–645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lupo, R., Breiling, A., Bianchi, M. E. & Orlando, V. Drosophila chromosome condensation proteins Topoisomerase II and Barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Mol. Cell 7, 127–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. West, S. & Proudfoot, N. J. Transcriptional termination enhances protein expression in human cells. Mol. Cell 33, 354–364 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shearwin, K. E., Callen, B. P. & Egan, J. B. Transcriptional interference — a crash course. Trends Genet. 21, 339–345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gullerova, M. & Proudfoot, N. J. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132, 983–995 (2008). This paper demonstrated that recruitment of cohesin to sites of convergent transcription during G1 requires overlapping antisense transcription and components of the RNAi pathway. During G2, cohesin complexes promote the use of upstream transcriptional termination sites at these loci.

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt, C. K., Brookes, N. & Uhlmann, F. Conserved features of cohesin binding along fission yeast chromosomes. Genome Biol. 10, R52 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Misulovin, Z. et al. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117, 89–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nature Genet. 36, 889–893 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Rollins, R. A., Morcillo, P. & Dorsett, D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152, 577–593 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, J. & Krantz, I. D. Cornelia de Lange syndrome, cohesin, and beyond. Clin. Genet. 76, 303–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dorsett, D. Cohesin, gene expression and development: lessons from Drosophila. Chromosome Res. 17, 185–200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pauli, A. et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev. Cell 14, 239–251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schuldiner, O. et al. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev. Cell 14, 227–238 (2008). References 54 and 55 utilized novel approaches to disrupt cohesin specifically in non-cycling neuronal cells in D. melanogaster . The resulting developmental phenotypes support non-mitotic roles for the complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gosling, K. M., Goodnow, C. C., Verma, N. K. & Fahrer, A. M. Defective T-cell function leading to reduced antibody production in a kleisin-β mutant mouse. Immunology 125, 208–217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gosling, K. M. et al. A mutation in a chromosome condensin II subunit, kleisin β, specifically disrupts T cell development. Proc. Natl Acad. Sci. USA 104, 12445–12450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Klein, F. et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Toth, A. et al. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103, 1155–1168 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Brar, G. A., Hochwagen, A., Ee, L. S. & Amon, A. The multiple roles of cohesin in meiotic chromosome morphogenesis and pairing. Mol. Biol. Cell 20, 1030–1047 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hochwagen, A., Tham, W. H., Brar, G. A. & Amon, A. The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell 122, 861–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Bannister, L. A., Reinholdt, L. G., Munroe, R. J. & Schimenti, J. C. Positional cloning and characterization of mouse mei8, a disrupted allelle of the meiotic cohesin Rec8. Genesis 40, 184–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Martinez-Perez, E. et al. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev. 22, 2886–2901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bhatt, A. M. et al. The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J. 19, 463–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Colaiacovo, M. P. et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell 5, 463–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Kleckner, N. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115, 175–194 (2006).

    Article  PubMed  Google Scholar 

  71. Severson, A. F., Ling, L., van Zuylen, V. & Meyer, B. J. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation. Genes Dev. 23, 1763–1778 (2009). This paper showed that multiple cohesin complexes that differ in a single subunit perform specialized functions during C. elegans meiosis. Published data suggest that the involvement of multiple cohesins during meiosis may be conserved in many plants and animals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pasierbek, P. et al. A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev. 15, 1349–1360 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goodyer, W. et al. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev. Cell 14, 263–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Pasierbek, P. et al. The Caenorhabditis elegans SCC-3 homologue is required for meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Exp. Cell Res. 289, 245–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Golubovskaya, I. N. et al. Alleles of afd1 dissect REC8 functions during meiotic prophase I. J. Cell Sci. 119, 3306–3315 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T. & McKay, M. J. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell 8, 949–961 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R. & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729–742 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chan, R. C., Severson, A. F. & Meyer, B. J. Condensin restructures chromosomes in preparation for meiotic divisions. J. Cell Biol. 167, 613–625 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hartl, T. A., Sweeney, S. J., Knepler, P. J. & Bosco, G. Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis. PLoS Genet. 4, e1000228 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Siddiqui, N. U., Stronghill, P. E., Dengler, R. E., Hasenkampf, C. A. & Riggs, C. D. Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis. Development 130, 3283–3295 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Yu, H. G. & Koshland, D. E. Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages. J. Cell Biol. 163, 937–947 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, H. G. & Koshland, D. Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Cell 123, 397–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Mets, D. G. & Meyer, B. J. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139, 73–86 (2009). This paper showed that condensin complexes regulate the number and distribution of DNA DSBs, and thereby COs, during C. elegans meiosis. Mutations that disrupt subunits of condensin I and II affect CO number and distribution in different ways, indicating that the two condensin complexes together influence the recombination landscape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsai, C. J. et al. Meiotic crossover number and distribution are regulated by a dosage compensation protein that resembles a condensin subunit. Genes Dev. 22, 194–211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Revenkova, E. et al. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nature Cell Biol. 6, 555–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Novak, I. et al. Cohesin Smc1β determines meiotic chromatin axis loop organization. J. Cell Biol. 180, 83–90 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Bernard, P. et al. A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4. Curr. Biol. 16, 875–881 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Ciosk, R. et al. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5, 243–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Seitan, V. C. et al. Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance. PLoS Biol. 4, e242 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Watrin, E. et al. Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr. Biol. 16, 863–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Toth, A. et al. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320–333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Takahashi, T. S., Basu, A., Bermudez, V., Hurwitz, J. & Walter, J. C. Cdc7–Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev. 22, 1894–1905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ocampo-Hafalla, M. T., Katou, Y., Shirahige, K. & Uhlmann, F. Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma 116, 531–544 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gause, M. et al. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma 117, 51–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Glynn, E. F. et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2, e259 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Kogut, I., Wang, J., Guacci, V., Mistry, R. K. & Megee, P. C. The Scc2/Scc4 cohesin loader determines the distribution of cohesin on budding yeast chromosomes. Genes Dev. 23, 2345–2357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, J. et al. Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol. 7, e1000119 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Kobayashi, T. & Ganley, A. R. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309, 1581–1584 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Adelfalk, C. et al. Cohesin SMC1β protects telomeres in meiocytes. J. Cell Biol. 187, 185–199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Revenkova, E. & Jessberger, R. Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins. Chromosoma 115, 235–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Csankovszki, G. et al. Three distinct condensin complexes control C. elegans chromosome dynamics. Curr. Biol. 19, 9–19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Heidinger-Pauli, J. M., Unal, E., Guacci, V. & Koshland, D. The kleisin subunit of cohesin dictates damage-induced cohesion. Mol. Cell 31, 47–56 (2008). This paper shows that, of many amino acid changes between Scc1 and Rec8, one is largely responsible for the different abilities of Scc1 cohesin and Rec8 cohesin to establish cohesion in response to DNA damage in G2/M phase.

    Article  CAS  PubMed  Google Scholar 

  106. Onn, I., Aono, N., Hirano, M. & Hirano, T. Reconstitution and subunit geometry of human condensin complexes. EMBO J. 26, 1024–1034 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gaszner, M. & Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nature Rev. Genet. 7, 703–713 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Sakuno, T. & Watanabe, Y. Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions. Chromosome Res. 17, 239–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Lengronne, A. et al. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol. Cell 23, 787–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Ben-Shahar, T. R. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).

    Article  CAS  Google Scholar 

  112. Rowland, B. D. et al. Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763–774 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566–569 (2008).

    Article  PubMed  CAS  Google Scholar 

  114. Zhang, J. et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Strom, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245 (2007).

    Article  PubMed  CAS  Google Scholar 

  116. Unal, E., Heidinger-Pauli, J. M. & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245–248 (2007).

    Article  PubMed  CAS  Google Scholar 

  117. Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M. A. & Nasmyth, K. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105, 459–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Giet, R. & Glover, D. M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 152, 669–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lipp, J. J., Hirota, T., Poser, I. & Peters, J. M. Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J. Cell Sci. 120, 1245–1255 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Takemoto, A. et al. Analysis of the role of Aurora B on the chromosomal targeting of condensin I. Nucleic Acids Res. 35, 2403–2412 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Takemoto, A., Kimura, K., Yanagisawa, J., Yokoyama, S. & Hanaoka, F. Negative regulation of condensin I by CK2-mediated phosphorylation. EMBO J. 25, 5339–5348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. St-Pierre, J. et al. Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. Mol. Cell 34, 416–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Miller, L. M., Plenefisch, J. D., Casson, L. P. & Meyer, B. J. xol-1: a gene that controls the male modes of both sex determination and X chromosome dosage compensation in C. elegans. Cell 55, 167–183 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Rhind, N. R., Miller, L. M., Kopczynski, J. B. & Meyer, B. J. xol-1 acts as an early switch in the C. elegans male/hermaphrodite decision. Cell 80, 71–82 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Dawes, H. E. et al. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. Science 284, 1800–1804 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Chu, D. S. et al. A molecular link between gene-specific and chromosome-wide transcriptional repression. Genes Dev. 16, 796–805 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to researchers whose work we were unable to cite owing to space constraints. We thank R. Holmes, F. Tan and L. Wahba for comments on the manuscript, A. Michel and B. Pferdehirt for images in figure 1, and J. Gunther for illustrations. A.J.W. has been funded by a Sir Henry Welcome Post-Doctoral Research Fellowship and B.J.M. by the US National Institutes of Health. B.J.M. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. Meyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Barbara J. Meyer's homepage

WormBase

Glossary

Catenations

Topological linkages between duplex DNA. Catenations between sister chromatids arise during replication.

CCCTC-binding factor

A zinc-finger protein associated with diverse context-dependent effects on transcription.

Insulator

A genetic boundary element that limits the distance over which regulatory signals can act.

Chromosome conformation capture

A method for identifying physical interactions between distant DNA sequences.

Nucleolus

A subnuclear region in which components of the translational machinery are synthesized. It is a site of abundant transcription by RNA polymerase I and III.

Transvection

The ability of a gene on one chromosome to influence the activity of an allele on the opposite chromosome when the chromosomes are paired.

Polytene chromosomes

DNA structures containing many paired sister chromatids, which are produced by multiple rounds of DNA replication without cell division.

Supercoils

Twists applied to DNA that can occur in the same (positive) or opposite (negative) orientation to the double helix.

Position effect variegation

Variegated expression patterns that arise owing to intercellular differences in epigenetic gene silencing, typically observed when reporter genes are brought into proximity with heterochromatin.

Genomic imprinting

Epigenetic marks that are differentially established during male and female gametogenesis and lead to allele-specific gene expression after fertilization.

Axon pruning

The selective loss of neuronal outgrowths to refine synaptic connectivity during development.

Genetic mosaics

Animals in which homozygous mutations are carried by only a small clone of cells.

Axial elements

Linear structures that assemble along the length of meiotic chromosomes. Axial elements become the lateral elements of the mature synaptonemal complex.

Co-orient

Attach to microtubules from the same spindle pole.

Bi-orient

Attach to microtubules from opposite spindle poles.

Synaptonemal complex

A proteinaceous structure that forms between pairs of homologous chromosomes during synapsis and facilitates crossover recombination.

Separase

A cysteine protease that cleaves the α-kleisin subunit of cohesin at the onset of anaphase to allow sister chromatid disjunction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, A., Severson, A. & Meyer, B. Condensin and cohesin complexity: the expanding repertoire of functions. Nat Rev Genet 11, 391–404 (2010). https://doi.org/10.1038/nrg2794

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing