Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours

Abstract

Clonal populations of mammalian cells are inherently heterogeneous. They contain cells that display non-genetic variability resulting from gene expression noise and the fact that gene networks have multiple stable states. These stable, heritable variants within one cell type can exhibit different levels of responsiveness to environmental conditions. Hence, they could in principle serve as a temporary substrate for natural selection in the absence of mutations. We suggest that such ubiquitous but non-genetic variability can contribute to the somatic evolution of cancer cells, hence accelerating tumour progression independently of genetic mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow cytometry reveals heterogeneity of phenotype in a clonal cell population.
Figure 2: A model of non-genetic population evolution of drug-resistant clones in cancer progression.

Similar content being viewed by others

References

  1. Curtis, H. J. Formal discussion of: somatic mutations and carcinogenesis. Cancer Res. 25, 1305–1308 (1965).

    CAS  PubMed  Google Scholar 

  2. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soto, A. M. & Sonnenschein, C. The somatic mutation theory of cancer: growing problems with the paradigm? Bioessays 26, 1097–1107 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Bernards, R. & Weinberg, R. A progression puzzle. Nature 418, 823 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Weigelt, B. & van't Veer, L. J. Hard-wired genotype in metastatic breast cancer. Cell Cycle 3, 756–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Liotta, L. A. & Kohn, E. C. Cancer's deadly signature. Nature Genet. 33, 10–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Podsypanina, K. et al. Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321, 1841–1844 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, S. & Ingber, D. E. A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis. 26, 27–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  11. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet. 6, 451–464 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Patrascioiu, A. The ergodic-hypothesis, a complicated problem in mathematics and physics. Los Alamos Science 15, 263–279 (1987).

    Google Scholar 

  14. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Blake, W. J., KÆrn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Austin, D. W. et al. Gene network shaping of inherent noise spectra. Nature 439, 608–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Takasuka, N., White, M. R., Wood, C. D., Robertson, W. R. & Davis, J. R. Dynamic changes in prolactin promoter activation in individual living lactotrophic cells. Endocrinology 139, 1361–1368 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Dietrich, J. E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Sigal, A. et al. Variability and memory of protein levels in human cells. Nature 444, 643–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, S. & Wikswo, J. Dimensions of systems biology. Rev. Physiol. Biochem. Pharmacol. 157, 81–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, S. & Kauffman, S. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.) (Springer) (in the press).

  25. Waddington, C. H. The Strategy of the Genes (Allen and Unwin, London, 1957).

    Google Scholar 

  26. Kauffman, S. Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, S., Eichler, G., Bar-Yam, Y. & Ingber, D. E. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94, 128701 (2005).

    Article  PubMed  Google Scholar 

  28. Achilles, E. G. et al. Heterogeneity of angiogenic activity in a human liposarcoma: a proposed mechanism for “no take” of human tumors in mice. J. Natl. Cancer Inst. 93, 1075–1081 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Hill, R. P., Chambers, A. F., Ling, V. & Harris, J. F. Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. Science 224, 998–1001 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Axelrod, D. E., Majumdar, S. K., Wivell, J. A. & Terry, R. W. Tumorigenicity of Friend murine erythroleukemia cell lines differing in spontaneous differentiation rates. Int. J. Cancer 26, 799–804 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Chow, D. A. & Greenberg, A. H. The generation of tumor heterogeneity in vivo. Int. J. Cancer 25, 261–265 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Dick, J. E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Campbell, L. L. & Polyak, K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6, 2332–2338 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Kauffman, S. Differentiation of malignant to benign cells. J. Theor. Biol. 31, 429–451 (1971).

    Article  CAS  PubMed  Google Scholar 

  38. Enver, T., Heyworth, C. M. & Dexter, T. M. Do stem cells play dice? Blood 92, 348–351 (1998); discussion 352.

    CAS  PubMed  Google Scholar 

  39. Hume, D. A. Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96, 2323–2328 (2000).

    CAS  PubMed  Google Scholar 

  40. Dean, A. C. & Hinshelwood, C. The stability of various adaptations of Bact. lactis aerogenes (Aerobacter aerogenes). Proc. R. Soc. Lond. B 142, 45–60 (1954).

    Article  CAS  PubMed  Google Scholar 

  41. Spudich, J. L. & Koshland, D. E. Jr. Non-genetic individuality: chance in the single cell. Nature 262, 467–471 (1976).

    Article  CAS  PubMed  Google Scholar 

  42. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Blake, W. J. et al. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Smith, M. C., Sumner, E. R. & Avery, S. V. Glutathione and Gts1p drive beneficial variability in the cadmium resistances of individual yeast cells. Mol. Microbiol. 66, 699–712 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, Y. & Zhang, Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother. 51, 2092–2099 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kashiwagi, A., Urabe, I., Kaneko, K. & Yomo, T. Adaptive response of a gene network to environmental changes by fitness-induced attractor selection. PLoS ONE 1, e49 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Loeb, L. A. A mutator phenotype in cancer. Cancer Res. 61, 3230–3239 (2001).

    CAS  PubMed  Google Scholar 

  48. Loeb, L. A., Loeb, K. R. & Anderson, J. P. Multiple mutations and cancer. Proc. Natl Acad. Sci. USA 100, 776–781 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tomlinson, I. & Bodmer, W. Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nature Med. 5, 11–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Jablonka, E. Inheritance systems and the evolution of new levels of individuality. J. Theor. Biol. 170, 301–309 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Keller, A. D. Fixation of epigenetic states in a population. J. Theor. Biol. 176, 211–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Morley, A. Quantifying leukemia. N. Engl. J. Med. 339, 627–629 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Talpaz, M. et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99, 1928–1937 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Gambacorti-Passerini, C. B. et al. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol. 4, 75–85 (2003).

    Article  PubMed  Google Scholar 

  56. Wei, Y. et al. Not all imatinib resistance in CML are BCR-ABL kinase domain mutations. Ann. Hematol. 85, 841–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Okabe, S., Tauchi, T. & Ohyashiki, K. Characteristics of dasatinib- and imatinib-resistant chronic myelogenous leukemia cells. Clin. Cancer Res. 14, 6181–6186 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol. 17, R233–R236 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Waddington, C. H. The epigenotype. Endeavour 1, 18–20 (1942).

    Google Scholar 

  62. Aurell, E. & Sneppen, K. Epigenetics as a first exit problem. Phys. Rev. Lett. 88, 048101 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Walczak, A. M., Onuchic, J. N. & Wolynes, P. G. Absolute rate theories of epigenetic stability. Proc. Natl Acad. Sci. USA 102, 18926–18931 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Schaefer, C. B., Ooi, S. K., Bestor, T. H. & Bourc'his, D. Epigenetic decisions in mammalian germ cells. Science 316, 398–399 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Arney, K. L. & Fisher, A. G. Epigenetic aspects of differentiation. J. Cell Sci. 117, 4355–4363 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Fuks, F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev. 15, 490–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Huang, S. Genomics, complexity and drug discovery: insights from Boolean network models of cellular regulation. Pharmacogenomics 2, 203–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Madhani, H. D. et al. Epigenomics: a roadmap, but to where? Science 322, 43–44 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Delbrück, M. in Unités biologiques douées de continuité génétique Colloques Internationaux du Centre National de la Recherche Scientifique (CNRS, Paris, 1949).

    Google Scholar 

  72. Monod, J. & Jacob, F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, K. Y. & Wang, J. Potential energy landscape and robustness of a gene regulatory network: toggle switch. PLoS Comput. Biol. 3, e60 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kurchan, J. & Laloux, L. Phase space geometry and slow dynamics. J. Phys. A Math. Gen. 29, 1929–1948 (1996).

    Article  Google Scholar 

  75. Kauffman, S. A. The Origins of Order (Oxford Univ. Press, New York, 1993).

    Google Scholar 

Download references

Acknowledgements

S.H. acknowledges support from the Air Force Office of Scientific Research, the National Institutes of Health and the Canada Foundation of Innovation. The authors also thank Alfonso Martinez-Arias for many discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sui Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Sui Huang's homepage

Institute for Biocomplexity and Informatics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brock, A., Chang, H. & Huang, S. Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 10, 336–342 (2009). https://doi.org/10.1038/nrg2556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing