Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological principles of microRNA-mediated regulation: shared themes amid diversity

Key Points

  • MicroRNAs (miRNAs) are 22-nucleotide regulatory RNAs derived from endogenous transcripts containing inverted repeats. Their predominant function is to repress the activity of cellular target transcripts.

  • In plants, most miRNAs are highly complementary to their targets and can cleave them; however, plant miRNAs can also inhibit the translation of highly complementary targets. In animals, miRNAs identify most of their targets through Watson–Crick complementary pairing (nucleotides 2–8 of the miRNA (the 'seed') pair with the target), and induce target destabilization and/or translational inhibition.

  • The phenotypic requirements of most plant miRNAs, along with at least some animal miRNAs, seem to be mediated by the strong repression of one or a few important targets. For such miRNA genetic switches, the loss of miRNA-mediated regulation of individual target genes can lead to morphological or behavioural abnormalities.

  • The regulation of a target by a miRNA could be relatively subtle and still have a substantial phenotypic impact, if the modulation of the target over a narrow range alters the target's output. Targets regulated in this manner include 'tuning', 'thresholding' and 'de-noising' targets.

  • Conserved seven-nucleotide-seed matches, along with transcriptome and proteome analyses, have revealed that animal miRNAs have many (often hundreds) of targets. This might allow miRNAs to have a broad impact on the spatial or temporal identity of a cell. In other cases, however, most of these target interactions might be of minimal detectable consequence; detailed genetic studies are required to distinguish these possibilities.

  • There is evidence, mostly from animals, that miRNA-mediated repression is reversible. Therefore, antagonizing miRNA activity allows the reuse of repressed target messages under conditions in which this is desirable.

  • miRNA dysfunction may contribute to human disease in myriad ways. Ectopic miRNA activity or the loss of miRNA-binding sites could lead to abnormal levels of one or many transcripts. On the other hand, miRNA loss or gain of miRNA-mediated regulation could lead to the inappropriate silencing of one or many transcripts.

Abstract

Regulation of gene activity by microRNAs is critical to myriad aspects of eukaryotic development and physiology. Amidst an extensive regulatory web that is predicted to involve thousands of transcripts, emergent themes are now beginning to illustrate how microRNAs have been incorporated into diverse settings. These include potent inhibition of individual key targets, fine-tuning of target activity, the coordinated regulation of target batteries, and the reversibility of some aspects of microRNA-mediated repression. Such themes may reflect some of the inherent advantages of exploiting microRNA control in biological circuits, and provide insight into the consequences of microRNA dysfunction in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classifying microRNA (miRNA) activities and functions.
Figure 2: Consequences of microRNA (miRNA) loss- or gain-of-function for cell state.
Figure 3: Multiple microRNA (miRNA) genetic switches in the nematode heterochronic pathway.
Figure 4: Configurations of microRNA (miRNA)–target networks.
Figure 5: Antagonism of microRNA (miRNA)-mediated repression.

Similar content being viewed by others

References

  1. Lau, N., Lim, L., Weinstein, E. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    CAS  PubMed  Google Scholar 

  2. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    CAS  PubMed  Google Scholar 

  3. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    CAS  PubMed  Google Scholar 

  4. Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637–646 (1997).

    CAS  PubMed  Google Scholar 

  5. Wightman, B., Burglin, T. R., Gatto, J., Arasu, P. & Ruvkun, G. Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev. 5, 1813–1824 (1991).

    CAS  PubMed  Google Scholar 

  6. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  Google Scholar 

  7. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993). References 6 and 7 provide the first formal description of a miRNA (lin-4) and a phenotypically important target ( lin-14 ), which together control developmental timing in nematodes.

    CAS  PubMed  Google Scholar 

  8. Lai, E. C., Burks, C. & Posakony, J. W. The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of Enhancer of split Complex transcripts. Development 125, 4077–4088 (1998).

    CAS  PubMed  Google Scholar 

  9. Lai, E. C. & Posakony, J. W. The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124, 4847–4856 (1997). References 8 and 9 revealed the dominant heptameric logic of animal miRNA binding sites, showed that miRNA binding sites confer both transcript destabilization/de-adenylation and translational inhibition, and demonstrated animal phenotypes that are due to the mutation of miRNA binding sites in single gene targets.

    CAS  PubMed  Google Scholar 

  10. Farazi, T. A., Juranek, S. A. & Tuschl, T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135, 1201–1214 (2008).

    CAS  PubMed  Google Scholar 

  11. Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nature Rev. Mol. Cell Biol. 9, 219–30 (2008).

    CAS  Google Scholar 

  12. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002). Reference 12 showed that most plant miRNAs identify targets with extended complementarity.

    CAS  PubMed  Google Scholar 

  13. Jones-Rhoades, M. W. & Bartel, D. P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14, 787–799 (2004).

    CAS  PubMed  Google Scholar 

  14. Fahlgren, N. et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2, e219 (2007).

    PubMed  PubMed Central  Google Scholar 

  15. Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53 (2006).

    CAS  PubMed  Google Scholar 

  16. Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. German, M. A. et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotechnol. 26, 941–946 (2008).

    CAS  Google Scholar 

  18. Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190 (2008).

    CAS  PubMed  Google Scholar 

  19. Rajewsky, N. MicroRNA target predictions in animals. Nature Genet. 38 (Suppl. 1), S8–S13 (2006).

    CAS  PubMed  Google Scholar 

  20. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    CAS  PubMed  Google Scholar 

  21. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  PubMed  Google Scholar 

  22. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005). References 21 and 22 are representative analyses that revealed the breadth of miRNA targeting in animal genomes.

    CAS  PubMed  Google Scholar 

  23. Ruby, J. G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 17, 1850–1864 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  PubMed  Google Scholar 

  25. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    PubMed  PubMed Central  Google Scholar 

  26. Ha, I., Wightman, B. & Ruvkun, G. A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev. 10, 3041–3050 (1996).

    CAS  PubMed  Google Scholar 

  27. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006). Reference 27 provides a convincing example of how the coordinated control of hundreds of targets by a single miRNA family is used to control temporal identity.

    CAS  PubMed  Google Scholar 

  28. Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    CAS  PubMed  Google Scholar 

  29. Sood, P., Krek, A., Zavolan, M., Macino, G. & Rajewsky, N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl Acad. Sci. USA 103, 2746–2751 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Genet. 5, 396–400 (2004).

    CAS  Google Scholar 

  31. Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    CAS  PubMed  Google Scholar 

  32. Bushati, N. & Cohen, S. M. MicroRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    CAS  PubMed  Google Scholar 

  33. Hristova, M., Birse, D., Hong, Y. & Ambros, V. The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding. Mol. Cell. Biol. 25, 11059–11072 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruvkun, G. et al. Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics 121, 501–516 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ambros, V. & Horvitz, H. R. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev. 1, 398–414 (1987).

    CAS  PubMed  Google Scholar 

  36. Chalfie, M., Horvitz, H. R. & Sulston, J. E. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24, 59–69 (1981).

    CAS  PubMed  Google Scholar 

  37. Arasu, P., Wightman, B. & Ruvkun, G. Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev. 5, 1825–1833 (1991).

    CAS  PubMed  Google Scholar 

  38. Feinbaum, R. & Ambros, V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev. Biol. 210, 87–95 (1999).

    CAS  PubMed  Google Scholar 

  39. Abbott, A. L. et al. The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev. Cell 9, 403–414 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Grosshans, H., Johnson, T., Reinert, K. L., Gerstein, M. & Slack, F. J. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell 8, 321–330 (2005).

    CAS  PubMed  Google Scholar 

  41. Lin, S. Y. et al. The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell 4, 639–650 (2003).

    CAS  PubMed  Google Scholar 

  42. Abrahante, J. E. et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell 4, 625–637 (2003).

    CAS  PubMed  Google Scholar 

  43. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    CAS  PubMed  Google Scholar 

  44. Moss, E. G. & Tang, L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev. Biol. 258, 432–442 (2003).

    CAS  PubMed  Google Scholar 

  45. O'Farrell, F., Esfahani, S. S., Engstrom, Y. & Kylsten, P. Regulation of the Drosophila lin-41 homologue dappled by let-7 reveals conservation of a regulatory mechanism within the LIN-41 subclade. Dev. Dyn. 237, 196–208 (2008).

    CAS  PubMed  Google Scholar 

  46. Sokol, N. S., Xu, P., Jan, Y. N. & Ambros, V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 22, 1591–1596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Caygill, E. E. & Johnston, L. A. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr. Biol. 18, 943–950 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, K. & Rajewsky, N. Deep conservation of microRNA-target relationships and 3′UTR motifs in vertebrates, flies, and nematodes. Cold Spring Harb. Symp. Quant. Biol. 71, 149–156 (2006).

    CAS  PubMed  Google Scholar 

  49. Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nature Rev. Genet. 8, 93–103 (2007).

    CAS  PubMed  Google Scholar 

  50. McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).

    CAS  PubMed  Google Scholar 

  51. Emery, J. F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).

    CAS  PubMed  Google Scholar 

  52. Baker, C. C., Sieber, P., Wellmer, F. & Meyerowitz, E. M. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr. Biol. 15, 303–315 (2005).

    CAS  PubMed  Google Scholar 

  53. Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J. L. & Meyerowitz, E. M. Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134, 1051–1060 (2007).

    CAS  PubMed  Google Scholar 

  54. Cartolano, M. et al. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nature Genet. 39, 901–905 (2007).

    CAS  PubMed  Google Scholar 

  55. Axtell, M. J. Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim. Biophys. Acta 10 Mar 2008 (doi: 10.1016/j.bbagrm.2008.02.007).

    CAS  Google Scholar 

  56. Lai, E. C. microRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genet. 30, 363–364 (2002).

    CAS  PubMed  Google Scholar 

  57. Lai, E. C., Tam, B. & Rubin, G. M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lai, E. C. Notch signaling: control of cell communication and cell fate. Development 131, 965–973 (2004).

    CAS  PubMed  Google Scholar 

  59. Nolo, R., Abbott, L. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–362 (2000).

    CAS  PubMed  Google Scholar 

  60. Li, Y., Wang, F., Lee, J. A. & Gao, F. B. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev. 20, 2793–2805 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Karres, J. S., Hilgers, V., Carrera, I., Treisman, J. & Cohen, S. M. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131, 136–145 (2007). Reference 61 provides evidence for a miRNA tuning target — continuing function of the target in a cognate miRNA-expressing domain was demonstrated phenotypically.

    CAS  PubMed  Google Scholar 

  62. Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nature Genet. 38 (Suppl. 1), S20–S24 (2006).

    CAS  PubMed  Google Scholar 

  63. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    CAS  PubMed  Google Scholar 

  64. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  PubMed  Google Scholar 

  66. Tadros, W. et al. SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev. Cell 12, 143–155 (2007).

    CAS  PubMed  Google Scholar 

  67. Bushati, N., Stark, A., Brennecke, J. & Cohen, S. M. Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr. Biol. 18, 501–506 (2008).

    CAS  PubMed  Google Scholar 

  68. Zhou, B., Wang, S., Mayr, C., Bartel, D. P. & Lodish, H. F. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc. Natl Acad. Sci. USA 104, 7080–7085 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Xiao, C. et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159 (2007).

    CAS  PubMed  Google Scholar 

  70. Cayirlioglu, P. et al. Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science 319, 1256–1260 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol. 1, E60 (2003).

    PubMed  PubMed Central  Google Scholar 

  72. Varghese, J. & Cohen, S. M. MicroRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev. 21, 2277–2282 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Johnnidis, J. B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–1129 (2008).

    CAS  PubMed  Google Scholar 

  74. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Koralov, S. B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132, 860–874 (2008).

    CAS  PubMed  Google Scholar 

  76. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006). Reference 76 demonstrates stress-dependent reversibility of miRNA-mediated repression.

    CAS  PubMed  Google Scholar 

  77. Schratt, G. M. et al. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289 (2006).

    CAS  PubMed  Google Scholar 

  78. Ashraf, S. I., McLoon, A. L., Sclarsic, S. M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124, 191–205 (2006).

    CAS  PubMed  Google Scholar 

  79. Mishima, Y. et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol. 16, 2135–2142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    CAS  PubMed  Google Scholar 

  81. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987–993 (2008).

    CAS  PubMed  Google Scholar 

  84. Vasudevan, S. & Steitz, J. A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128, 1105–1118 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    CAS  PubMed  Google Scholar 

  86. Miska, E. A. et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 3, e215 (2007).

    PubMed  PubMed Central  Google Scholar 

  87. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    CAS  PubMed  Google Scholar 

  89. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    CAS  PubMed  Google Scholar 

  90. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    CAS  PubMed  Google Scholar 

  91. Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, Y. S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genet. 38, 813–818 (2006). Reference 93 provides convincing evidence that the de novo acquisition of a miRNA binding site can have phenotypic consequences.

    CAS  PubMed  Google Scholar 

  94. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chang, T. C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet. 40, 43–50 (2008).

    CAS  PubMed  Google Scholar 

  96. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    CAS  PubMed  Google Scholar 

  97. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004).

    CAS  PubMed  Google Scholar 

  98. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005). References 96, 97 and 98 show that a mammalian miRNA cluster exhibits oncogenic activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hobert, O. Gene regulation by transcription factors and microRNAs. Science 319, 1785–1786 (2008).

    CAS  PubMed  Google Scholar 

  100. Axtell, M. J., Snyder, J. A. & Bartel, D. P. Common functions for diverse small RNAs of land plants. Plant Cell 19, 1750–1769 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Floyd, S. K. & Bowman, J. L. Gene regulation: ancient microRNA target sequences in plants. Nature 428, 485–486 (2004).

    CAS  PubMed  Google Scholar 

  102. Allen, E. et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genet. 36, 1282–1290 (2004).

    CAS  PubMed  Google Scholar 

  103. Li, X. & Carthew, R. W. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267–1277 (2005).

    CAS  PubMed  Google Scholar 

  104. Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845–849 (2003).

    CAS  PubMed  Google Scholar 

  105. Chang, S., Johnston, R. J. Jr, Frokjaer-Jensen, C., Lockery, S. & Hobert, O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430, 785–789 (2004).

    CAS  PubMed  Google Scholar 

  106. Johnston, R. J. Jr, Chang, S., Etchberger, J. F., Ortiz, C. O. & Hobert, O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl Acad. Sci. USA 102, 12449–12454 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, L. & Belasco, J. G. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 25, 9198–9208 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Johnson, S. M., Lin, S. Y. & Slack, F. J. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev. Biol. 259, 364–379 (2003).

    CAS  PubMed  Google Scholar 

  109. Leviten, M. W., Lai, E. C. & Posakony, J. W. The Drosophila gene Bearded encodes a novel small protein and shares 3′ UTR sequence motifs with multiple Enhancer of split complex genes. Development 124, 4039–4051 (1997).

    CAS  PubMed  Google Scholar 

  110. Klämbt, C., Knust, E., Tietze, K. & Campos-Ortega, J. Closely related transcripts encoded by the neurogenic gene complex Enhancer of split of Drosophila melanogaster. EMBO J. 8, 203–210 (1989).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the many researchers whose findings were not covered in this Review owing to space limitations. This work was supported by grants from the V Foundation for Cancer Research, the Sidney Kimmel Cancer Foundation, the Alfred Bressler Scholars Fund and the US National Institutes of Health (R01-GM083300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Lai.

Related links

Related links

FURTHER INFORMATION

TargetScan

Glossary

Argonaute proteins

A family of proteins with PAZ and PIWI domains that directly bind specific small RNAs (including miRNAs, siRNAs and piRNAs). After binding, the small RNA guides the Argonaute, along with its associated protein complex, to regulatory targets.

Genetic drift

Changes in allele frequency or nucleotide identity that occur entirely by chance.

Epistasis analysis

A genetic-interaction test that is applied when mutations in two genes yield different phenotypes with respect to a common biological process. One of the genes is said to be epistastic if the phenotype of the double mutant resembles that of the single mutant, as opposed to being intermediate.

Heterochronic gene

A gene that determines an organism's stage-specific temporal state during its development.

Imaginal discs

Tissues that, in holometabolous insects such as D. melanogaster, will give rise to the adult structures during metamorphosis.

Notch

A transmembrane receptor that coordinates a cell–cell signalling cascade that is fundamental to the specification of diverse animal cell fates.

Canalization

The capacity of individuals within a species to yield similar phenotypic traits despite genetic and/or environmental variability.

Drosha and Dicer

RNAse III enzymes that catalyse nuclear and cytoplasmic cleavage, respectively, of animal miRNA precursors. Plants lack Drosha, and a Dicer homologue called Dicer-like 1 seems to execute both cleavage events in the nucleus during miRNA maturation. Various animal and plant Dicers are also involved in small interfering RNA biogenesis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynt, A., Lai, E. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9, 831–842 (2008). https://doi.org/10.1038/nrg2455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing