Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of hepatic glucose metabolism in health and disease

Key Points

  • Hepatic glucose metabolism encompasses several catabolic and anabolic fluxes that have distinct modes of hepatocyte-autonomous (direct) and hepatocyte- non-autonomous (indirect) regulatory mechanisms

  • Acute regulation of hepatic glucose metabolism is achieved through changes in protein phosphorylation, substrate availability, allostery and redox state

  • Chronic regulation of hepatic glucose metabolism occurs through transcriptional mechanisms and the development of insulin resistance

  • Acute suppression of hepatic gluconeogenesis by insulin is largely an indirect effect that is mediated mostly through the suppression of adipose lipolysis, which reduces delivery of nonesterified fatty acids and glycerol to the liver

  • The major direct effect of insulin on hepatic glucose metabolism is the acute regulation of hepatic glycogen metabolism; however, hyperglycaemia and hyperinsulinaemia are required to maximally stimulate net hepatic glycogenesis

  • Lipid-induced hepatic insulin resistance, hyperglucagonaemia and excessive adipose lipolysis represent three pathophysiological processes that might be amenable to pharmacological intervention in humans who have impaired hepatic glucose metabolism

Abstract

The liver is crucial for the maintenance of normal glucose homeostasis — it produces glucose during fasting and stores glucose postprandially. However, these hepatic processes are dysregulated in type 1 and type 2 diabetes mellitus, and this imbalance contributes to hyperglycaemia in the fasted and postprandial states. Net hepatic glucose production is the summation of glucose fluxes from gluconeogenesis, glycogenolysis, glycogen synthesis, glycolysis and other pathways. In this Review, we discuss the in vivo regulation of these hepatic glucose fluxes. In particular, we highlight the importance of indirect (extrahepatic) control of hepatic gluconeogenesis and direct (hepatic) control of hepatic glycogen metabolism. We also propose a mechanism for the progression of subclinical hepatic insulin resistance to overt fasting hyperglycaemia in type 2 diabetes mellitus. Insights into the control of hepatic gluconeogenesis by metformin and insulin and into the role of lipid-induced hepatic insulin resistance in modifying gluconeogenic and net hepatic glycogen synthetic flux are also discussed. Finally, we consider the therapeutic potential of strategies that target hepatosteatosis, hyperglucagonaemia and adipose lipolysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Control of hepatic gluconeogenesis.
Figure 2: Control of hepatic glycogen metabolism.
Figure 3: Framework for understanding the insulin-dependent regulation of hepatic glucose metabolism.
Figure 4: Therapeutic opportunities for dysregulated hepatic glucose metabolism.

Similar content being viewed by others

References

  1. Ekberg, K. et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48, 292–298 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Moore, M. C., Coate, K. C., Winnick, J. J., An, Z. & Cherrington, A. D. Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 3, 286–294 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rizza, R. A. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 59, 2697–2707 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Moore, M. C. et al. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J. Clin. Invest. 88, 578–587 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rothman, D. L., Magnusson, I., Katz, L. D., Shulman, R. G. & Shulman, G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254, 573–576 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Mari, A., Wahren, J., DeFronzo, R. A. & Ferrannini, E. Glucose absorption and production following oral glucose: comparison of compartmental and arteriovenous-difference methods. Metabolism 43, 1419–1425 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Ishida, T. et al. Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucagon extraction in conscious dogs. J. Clin. Invest. 72, 590–601 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pagliassotti, M. J. & Cherrington, A. D. Regulation of net hepatic glucose uptake in vivo. Annu. Rev. Physiol. 54, 847–860 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Ferrannini, E. et al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes 34, 580–588 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Petersen, K. F., Laurent, D., Rothman, D. L., Cline, G. W. & Shulman, G. I. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J. Clin. Invest. 101, 1203–1209 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lin, H. V. & Accili, D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14, 9–19 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cherrington, A. D., Edgerton, D. & Sindelar, D. K. The direct and indirect effects of insulin on hepatic glucose production in vivo. Diabetologia 41, 987–996 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Pagliassotti, M. J., Moore, M. C., Neal, D. W. & Cherrington, A. D. Insulin is required for the liver to respond to intraportal glucose delivery in the conscious dog. Diabetes 41, 1247–1256 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. McGuinness, O. P., Ayala, J. E., Laughlin, M. R. & Wasserman, D. H. NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am. J. Physiol. Endocrinol. Metab. 297, E849–E855 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kowalski, G. M. & Bruce, C. R. The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents. Am. J. Physiol. Endocrinol. Metab. 307, E859–E871 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Steele, R. et al. Inhibition by insulin of hepatic glucose production in the normal dog. Am. J. Physiol. 208, 301–306 (1965).

    Article  CAS  PubMed  Google Scholar 

  17. Rizza, R. A., Mandarino, L. J. & Gerich, J. E. Dose–response characteristics for effects of insulin on production and utilization of glucose in man. Am. J. Physiol. 240, E630–E639 (1981).

    CAS  PubMed  Google Scholar 

  18. Basu, A., Shah, P., Nielsen, M., Basu, R. & Rizza, R. A. Effects of type 2 diabetes on the regulation of hepatic glucose metabolism. J. Investig. Med. 52, 366–374 (2004).

    CAS  PubMed  Google Scholar 

  19. Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G. & Shulman, G. I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Invest. 90, 1323–1327 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Perry, R. J., Samuel, V. T., Petersen, K. F. & Shulman, G. I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84–91 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kumashiro, N. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 108, 16381–16385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petersen, K. F. et al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54, 603–608 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. Petersen, K. F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Perry, R. J., Zhang, D., Zhang, X.-M., Boyer, J. L. & Shulman, G. I. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347, 1253–1256 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Perry, R. J. et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 18, 740–748 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kim, J. K., Gavrilova, O., Chen, Y., Reitman, M. L. & Shulman, G. I. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J. Biol. Chem. 275, 8456–8460 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Magkos, F. et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444–1446.e2 (2012).

    Article  PubMed  CAS  Google Scholar 

  29. Luukkonen, P. K. et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 1167–1175 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. ter Horst, K. W. et al. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep. 19, 1997–2004 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Samuel, V. T. et al. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117, 739–745 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Samuel, V. T. et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345–32353 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Petersen, M. C. et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Invest. 126, 4361–4371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Williams, A. S. et al. Integrin-linked kinase is necessary for the development of diet-induced hepatic insulin resistance. Diabetes 66, 325–334 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Boden, G. Gluconeogenesis and glycogenolysis in health and diabetes. J. Investig. Med. 52, 375–378 (2004).

    Article  PubMed  Google Scholar 

  37. Chen, X., Iqbal, N. & Boden, G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J. Clin. Invest. 103, 365–372 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Katz, J. & Tayek, J. A. Gluconeogenesis and the Cori cycle in 12-, 20-, and 40- h-fasted humans. Am. J. Physiol. 275, E537–E542 (1998).

    CAS  PubMed  Google Scholar 

  39. Landau, B. R. et al. Contributions of gluconeogenesis to glucose production in the fasted state. J. Clin. Invest. 98, 378–385 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Levine, R. & Fritz, I. B. The relation of insulin to liver metabolism. Diabetes 5, 209–219 (1956).

    Article  CAS  PubMed  Google Scholar 

  41. Gaisano, H., MacDonald, P. E. & Vranic, M. Glucagon secretion and signaling in the development of diabetes. Front. Physiol. 3, 349 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pearson, M. J., Unger, R. H. & Holland, W. L. Clinical trials, triumphs, and tribulations of glucagon receptor antagonists. Diabetes Care 39, 1075–1077 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ader, M. & Bergman, R. N. Peripheral effects of insulin dominate suppression of fasting hepatic glucose production. Am. J. Physiol. 258, E1020–E1032 (1990).

    CAS  PubMed  Google Scholar 

  44. Lewis, G. F., Zinman, B., Groenewoud, Y., Vranic, M. & Giacca, A. Hepatic glucose production is regulated both by direct hepatic and extrahepatic effects of insulin in humans. Diabetes 45, 454–462 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Sindelar, D. K., Balcom, J. H., Chu, C. A., Neal, D. W. & Cherrington, A. D. A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog. Diabetes 45, 1594–1604 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Prager, R., Wallace, P. & Olefsky, J. M. Direct and indirect effects of insulin to inhibit hepatic glucose output in obese subjects. Diabetes 36, 607–611 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Staehr, P. et al. Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis. Diabetes 52, 260–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Lewis, G. F., Vranic, M., Harley, P. & Giacca, A. Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans. Diabetes 46, 1111–1119 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Sindelar, D. K. et al. The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes 46, 187–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Rebrin, K., Steil, G. M., Mittelman, S. D. & Bergman, R. N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J. Clin. Invest. 98, 741–749 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Perry, R. J. et al. Hepatic acetyl coa links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Perry, R. J. et al. Leptin reverses diabetes by suppression of the hypothalamic–pituitary–adrenal axis. Nat. Med. 20, 759–763 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Perry, R. J., Peng, L. & Shulman, G. I. Mechanism for leptin's acute insulin-independent effect to reverse diabetic ketoacidosis. J. Clin. Invest. 127, 657–669 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Previs, S. F., Cline, G. W. & Shulman, G. I. A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo. Am. J. Physiol. 277, E154–E160 (1999).

    CAS  PubMed  Google Scholar 

  55. Krebs, H. A., Speake, R. N. & Hems, R. Acceleration of renal gluconeogenesis by ketone bodies and fatty acids. Biochem. J. 94, 712–720 (1965).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Keech, D. B. & Utter, M. F. Pyruvate carboxylase. II. Properties. J. Biol. Chem. 238, 2609–2614 (1963).

    CAS  PubMed  Google Scholar 

  57. Williamson, J. R., Kreisberg, R. A. & Felts, P. W. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc. Natl Acad. Sci. USA 56, 247–254 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu, M. et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat. Med. 18, 388–395 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Buettner, C. et al. Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice. J. Clin. Invest. 115, 1306–1313 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Okamoto, H., Obici, S., Accili, D. & Rossetti, L. Restoration of liver insulin signaling in Insr knockout mice fails to normalize hepatic insulin action. J. Clin. Invest. 115, 1314–1322 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Chen, Y. D., Golay, A., Swislocki, A. L. & Reaven, G. M. Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 64, 17–21 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Fraze, E. et al. Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J. Clin. Endocrinol. Metab. 61, 807–811 (1985).

    Article  CAS  PubMed  Google Scholar 

  63. Reaven, G. M., Hollenbeck, C., Jeng, C. Y., Wu, M. S. & Chen, Y. D. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37, 1020–1024 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Golay, A., Swislocki, A. L., Chen, Y. D. & Reaven, G. M. Relationships between plasma-free fatty acid concentration, endogenous glucose production, and fasting hyperglycemia in normal and non-insulin-dependent diabetic individuals. Metabolism 36, 692–696 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Swislocki, A. L., Chen, Y. D., Golay, A., Chang, M. O. & Reaven, G. M. Insulin suppression of plasma-free fatty acid concentration in normal individuals and patients with type 2 (non-insulin-dependent) diabetes. Diabetologia 30, 622–626 (1987).

    CAS  PubMed  Google Scholar 

  66. Charles, M. A. et al. The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 40, 1101–1106 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Paolisso, G. et al. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38, 1213–1217 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Jocken, J. W. E. et al. Insulin-mediated suppression of lipolysis in adipose tissue and skeletal muscle of obese type 2 diabetic men and men with normal glucose tolerance. Diabetologia 56, 2255–2265 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Heptulla, R. A. et al. In situ evidence that peripheral insulin resistance in adolescents with poorly controlled type 1 diabetes is associated with impaired suppression of lipolysis: a microdialysis study. Pediatr. Res. 53, 830–835 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Gelding, S. V., Coldham, N., Niththyananthan, R., Anyaoku, V. & Johnston, D. G. Insulin resistance with respect to lipolysis in non-diabetic relatives of European patients with type 2 diabetes. Diabet. Med. 12, 66–73 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Robinson, C. et al. Effect of insulin on glycerol production in obese adolescents. Am. J. Physiol. 274, E737–E743 (1998).

    CAS  PubMed  Google Scholar 

  72. Puhakainen, I., Koivisto, V. A. & Yki-Järvinen, H. Lipolysis and gluconeogenesis from glycerol are increased in patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 75, 789–794 (1992).

    CAS  PubMed  Google Scholar 

  73. Nurjhan, N., Consoli, A. & Gerich, J. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 89, 169–175 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Perry, R. J., Peng, L., Cline, G. W., Petersen, K. F. & Shulman, G. I. A. Non-invasive method to assess hepatic acetyl-CoA in vivo. Cell Metab. 25, 749–756 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. American Diabetes Association. 7. Approaches to glycemic treatment. Diabetes Care 39, S52–S59 (2016).

  76. Hundal, R. S. et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063–2069 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. Inzucchi, S. E. et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N. Engl. J. Med. 338, 867–872 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635–646 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cao, J. et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J. Biol. Chem. 289, 20435–20446 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hawley, S. A., Gadalla, A. E., Olsen, G. S. & Hardie, D. G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420–2425 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Howell, J. J. et al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 25, 463–471 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. El-Mir, M. Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Konopka, A. R. et al. Hyperglucagonemia mitigates the effect of metformin on glucose production in prediabetes. Cell Rep. 15, 1394–1400 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Pernicova, I. & Korbonits, M. Metformin — mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Brown, L. J. et al. Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. J. Biol. Chem. 277, 32892–32898 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Saheki, T. et al. Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency. J. Biol. Chem. 282, 25041–25052 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Baur, J. A. & Birnbaum, M. J. Control of gluconeogenesis by metformin: does redox trump energy charge? Cell Metab. 20, 197–199 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Exton, J. H. & Park, C. R. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3′,5′-monophosphate on gluconeogenesis in the perfused rat liver. J. Biol. Chem. 243, 4189–4196 (1968).

    CAS  PubMed  Google Scholar 

  96. Lee, Y. et al. Hyperglycemia in rodent models of type 2 diabetes requires insulin-resistant alpha cells. Proc. Natl Acad. Sci. USA 111, 13217–13222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Blair, J. B., Cimbala, M. A., Foster, J. L. & Morgan, R. A. Hepatic pyruvate kinase. Regulation by glucagon, cyclic adenosine 3′-5′-monophosphate, and insulin in the perfused rat liver. J. Biol. Chem. 251, 3756–3762 (1976).

    CAS  PubMed  Google Scholar 

  98. Rider, M. H. et al. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem. J. 381, 561–579 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wu, C. et al. Perturbation of glucose flux in the liver by decreasing F26P2 levels causes hepatic insulin resistance and hyperglycemia. Am. J. Physiol. Endocrinol. Metab. 291, E536–E543 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Cullen, K. S., Al-Oanzi, Z. H., O'Harte, F. P. M., Agius, L. & Arden, C. Glucagon induces translocation of glucokinase from the cytoplasm to the nucleus of hepatocytes by transfer between 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase-2 and the glucokinase regulatory protein. Biochim. Biophys. Acta 1843, 1123–1134 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Romere, C. et al. Asprosin, a fasting-induced glucogenic protein hormone. Cell 165, 566–579 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Edgerton, D. S. et al. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes 58, 2766–2775 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ramnanan, C. J. et al. Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes 59, 1302–1311 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 423, 550–555 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Nakae, J., Kitamura, T., Silver, D. L. & Accili, D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest. 108, 1359–1367 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Schmoll, D. et al. Regulation of glucose-6-phosphatase gene expression by protein kinase Bα and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J. Biol. Chem. 275, 36324–36333 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Matsumoto, M. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116, 2464–2472 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Haeusler, R. A., Kaestner, K. H. & Accili, D. FoxOs function synergistically to promote glucose production. J. Biol. Chem. 285, 35245–35248 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. O.-Sullivan, I. et al. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat. Commun. 6, 7079 (2015).

    Article  PubMed  CAS  Google Scholar 

  111. Titchenell, P. M., Chu, Q., Monks, B. R. & Birnbaum, M. J. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat. Commun. 6, 7078 (2015).

    Article  PubMed  CAS  Google Scholar 

  112. Samuel, V. T. et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. Proc. Natl Acad. Sci. USA 106, 12121–12126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Koo, S.-H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1111 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Dentin, R. et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366–369 (2007).

    Article  PubMed  CAS  Google Scholar 

  115. Wang, Y. et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485, 128–132 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269–273 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wang, Y. et al. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc. Natl Acad. Sci. USA 107, 3087–3092 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hogan, M. F. et al. Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2. J. Biol. Chem. 290, 25997–26006 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Bass, J. & Lazar, M. A. Circadian time signatures of fitness and disease. Science 354, 994–999 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, E. E. et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16, 1152–1156 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lamia, K. A. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lamia, K. A., Storch, K.-F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172–15177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sun, Z. et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18, 934–942 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Burgess, S. C. et al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 5, 313–320 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Zingone, A. et al. Correction of glycogen storage disease type 1a in a mouse model by gene therapy. J. Biol. Chem. 275, 828–832 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Bernard, C. Leçons de physiologie expérimentale appliquée a la médecine (J.-B. Baillière, 1855).

    Google Scholar 

  127. Schwartz, M. W. et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503, 59–66 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Myers, M. G. & Olson, D. P. Central nervous system control of metabolism. Nature 491, 357–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Perry, R. J., Petersen, K. F. & Shulman, G. I. Pleotropic effects of leptin to reverse insulin resistance and diabetic ketoacidosis. Diabetologia 59, 933–937 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Duffy, K. R. & Pardridge, W. M. Blood–brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420, 32–38 (1987).

    Article  CAS  PubMed  Google Scholar 

  131. Plum, L., Schubert, M. & Brüning, J. C. The role of insulin receptor signaling in the brain. Trends Endocrinol. Metab. 16, 59–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Brüning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  PubMed  Google Scholar 

  133. Obici, S., Zhang, B. B., Karkanias, G. & Rossetti, L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8, 1376–1382 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Pocai, A. et al. Hypothalamic KATP channels control hepatic glucose production. Nature 434, 1026–1031 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Kleinridders, A., Ferris, H. A., Cai, W. & Kahn, C. R. Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63, 2232–2243 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Edgerton, D. S. et al. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J. Clin. Invest. 116, 521–527 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ramnanan, C. J. et al. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J. Clin. Invest. 121, 3713–3723 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Shulman, G. I. & Landau, B. R. Pathways of glycogen repletion. Physiol. Rev. 72, 1019–1035 (1992).

    Article  CAS  PubMed  Google Scholar 

  139. Syed, N. A. & Khandelwal, R. L. Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol-3 kinase and protein phosphatase-1 in HepG2 cells. Mol. Cell. Biochem. 211, 123–136 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Moore, M. C. et al. Hepatic glucose disposition during concomitant portal glucose and amino acid infusions in the dog. Am. J. Physiol. 274, E893–E902 (1998).

    CAS  PubMed  Google Scholar 

  141. Gomis, R. R., Ferrer, J. C. & Guinovart, J. J. Shared control of hepatic glycogen synthesis by glycogen synthase and glucokinase. Biochem. J. 351, 811–816 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. O'Doherty, R. M. et al. Differential metabolic effects of adenovirus-mediated glucokinase and hexokinase I overexpression in rat primary hepatocytes. J. Biol. Chem. 271, 20524–20530 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Niswender, K. D., Shiota, M., Postic, C., Cherrington, A. D. & Magnuson, M. A. Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism. J. Biol. Chem. 272, 22570–22575 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Titchenell, P. M. et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23, 1154–1166 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Velho, G. et al. Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects. J. Clin. Invest. 98, 1755–1761 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Raimondo, A., Rees, M. G. & Gloyn, A. L. Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism. Curr. Opin. Lipidol. 26, 88–95 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Agius, L. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 414, 1–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Agius, L., Peak, M., Newgard, C. B., Gomez-Foix, A. M. & Guinovart, J. J. Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J. Biol. Chem. 271, 30479–30486 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Härndahl, L., Schmoll, D., Herling, A. W. & Agius, L. The role of glucose 6-phosphate in mediating the effects of glucokinase overexpression on hepatic glucose metabolism. FEBS J. 273, 336–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. von Wilamowitz-Moellendorff, A. et al. Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes 62, 4070–4082 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Bollen, M., Keppens, S. & Stalmans, W. Specific features of glycogen metabolism in the liver. Biochem. J. 336, 19–31 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Ros, S., García-Rocha, M., Domínguez, J., Ferrer, J. C. & Guinovart, J. J. Control of liver glycogen synthase activity and intracellular distribution by phosphorylation. J. Biol. Chem. 284, 6370–6378 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Bultot, L. et al. AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochem. J. 443, 193–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Ros, S. et al. Hepatic overexpression of a constitutively active form of liver glycogen synthase improves glucose homeostasis. J. Biol. Chem. 285, 37170–37177 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Cohen, P. The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Phil. Trans. R. Soc. B 354, 485–495 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wan, M. et al. A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition. Cell Metab. 18, 99–105 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kitamura, T. et al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine–threonine kinase Akt. Mol. Cell. Biol. 19, 6286–6296 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Jurczak, M. J., Danos, A. M., Rehrmann, V. R. & Brady, M. J. The role of protein translocation in the regulation of glycogen metabolism. J. Cell. Biochem. 104, 435–443 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Alemany, S. & Cohen, P. Phosphorylase a is an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase-1. FEBS Lett. 198, 194–202 (1986).

    Article  CAS  PubMed  Google Scholar 

  160. Carabaza, A., Ciudad, C. J., Baqué, S. & Guinovart, J. J. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Lett. 296, 211–214 (1992).

    Article  CAS  PubMed  Google Scholar 

  161. Samuel, V. T. & Shulman, G. I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126, 12–22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    Article  PubMed  CAS  Google Scholar 

  163. Tolman, K. G., Fonseca, V., Dalpiaz, A. & Tan, M. H. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 30, 734–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Lee, Y. H., Wang, M.-Y., Yu, X.-X. & Unger, R. H. Glucagon is the key factor in the development of diabetes. Diabetologia 59, 1372–1375 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Henry, R. R., Scheaffer, L. & Olefsky, J. M. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 61, 917–925 (1985).

    Article  CAS  PubMed  Google Scholar 

  166. American Diabetes Association. 6. Obesity management for the treatment of type 2 diabetes. Diabetes Care 39, S47–S51 (2016).

  167. Lefebvre, P. J. & Luyckx, A. S. Glucagon and diabetes: a reappraisal. Diabetologia 16, 347–354 (1979).

    Article  CAS  PubMed  Google Scholar 

  168. Lotfy, M., Kalasz, H., Szalai, G., Singh, J. & Adeghate, E. Recent progress in the use of glucagon and glucagon receptor antagonists in the treatment of diabetes mellitus. Open Med. Chem. J. 8, 28–35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Bagger, J. I., Knop, F. K., Holst, J. J. & Vilsbøll, T. Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes. Metab. 13, 965–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Habegger, K. M. et al. The metabolic actions of glucagon revisited. Nat. Rev. Endocrinol. 6, 689–697 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Reaven, G. M., Chen, Y. D., Golay, A., Swislocki, A. L. & Jaspan, J. B. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 64, 106–110 (1987).

    Article  CAS  PubMed  Google Scholar 

  172. Baron, A. D., Schaeffer, L., Shragg, P. & Kolterman, O. G. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 36, 274–283 (1987).

    Article  CAS  PubMed  Google Scholar 

  173. Woerle, H. J. et al. Mechanisms for abnormal postprandial glucose metabolism in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 290, E67–E77 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Menge, B. A. et al. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes. Diabetes 60, 2160–2168 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Lee, Y. et al. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc. Natl Acad. Sci. USA 109, 14972–14976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Neumann, U. H. et al. Glucagon receptor gene deletion in insulin knockout mice modestly reduces blood glucose and ketones but does not promote survival. Mol. Metab. 5, 731–736 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Petersen, K. F. & Sullivan, J. T. Effects of a novel glucagon receptor antagonist (Bay 27–9955) on glucagon-stimulated glucose production in humans. Diabetologia 44, 2018–2024 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Guan, H.-P. et al. Glucagon receptor antagonism induces increased cholesterol absorption. J. Lipid Res. 56, 2183–2195 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Kelly, R. P. et al. Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes. Diabetes Obes. Metab. 17, 414–422 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Kazda, C. M. et al. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care 39, 1241–1249 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Longuet, C. et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 8, 359–371 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Vatner, D. F. et al. Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. Am. J. Physiol. Endocrinol. Metab. 305, E89–E100 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Martagón, A. J., Lin, J. Z., Cimini, S. L., Webb, P. & Phillips, K. J. The amelioration of hepatic steatosis by thyroid hormone receptor agonists is insufficient to restore insulin sensitivity in ob/ob mice. PLoS ONE 10, e0122987 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Finan, B. et al. Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167, 843–857.e14 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Soccio, R. E., Chen, E. R. & Lazar, M. A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 20, 573–591 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Mayerson, A. B. et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51, 797–802 (2002).

    Article  PubMed  CAS  Google Scholar 

  189. Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Gastaldelli, A. et al. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 50, 1087–1093 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Rizos, C. V., Kei, A. & Elisaf, M. S. The current role of thiazolidinediones in diabetes management. Arch. Toxicol. 90, 1861–1881 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 9, 352–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Phan, B. A. P. et al. Effects of niacin on glucose levels, coronary stenosis progression, and clinical events in subjects with normal baseline glucose levels (<100 mg/dl): a combined analysis of the Familial Atherosclerosis Treatment Study (FATS), HDL-Atherosclerosis Treatment Study (HATS), Armed Forces Regression Study (AFREGS), and Carotid Plaque Composition by MRI during lipid-lowering (CPC) study. Am. J. Cardiol. 111, 352–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Guyton, J. R. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr. Opin. Lipidol. 18, 415–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Kroon, T., Kjellstedt, A., Thalén, P., Gabrielsson, J. & Oakes, N. D. Dosing profile profoundly influences nicotinic acid's ability to improve metabolic control in rats. J. Lipid Res. 56, 1679–1690 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to those many colleagues whose important contributions could not be discussed owing to word and reference limits. The authors thank A.K. Madiraju for helpful comments. M.C.P. acknowledges grant support from the US National Institutes of Health (NIH; grants F30 DK-104596 and T32 GM-007205). D.F.V. acknowledges grant support from the NIH (grant K23 DK-102874). G.I.S. acknowledges grant support from the NIH (grants R01 DK40936, R01 DK113984 and P30 DK045735).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the preparation of the article. The order of authorship and contribution is M.C.P., D.F.V. and G.I.S.

Corresponding author

Correspondence to Gerald I. Shulman.

Ethics declarations

Competing interests

M.C.P. and D.F.V. declare no competing interests. G.I.S. serves on scientific advisory boards for Merck, Novo Nordisk, Celgene, Aegerion and AstraZeneca, receives investigator-initiated support from Gilead Sciences, Inc., and is an inventor on Yale patents for liver-targeted mitochondrial uncoupling agents for the treatment of NAFLD, NASH, type 2 diabetes and related metabolic disorders.

PowerPoint slides

Glossary

Hyperinsulinaemic–euglycaemic clamp technique

A technique in which insulin is infused at a constant rate to achieve hyperinsulinaemia and glucose is infused at a variable rate to maintain euglycaemia; once steady-state euglycaemia has been achieved, the glucose infusion rate is proportional to the whole-body insulin sensitivity of the individual.

Pyruvate tolerance test

A test in which a large bolus of the gluconeogenic substrate pyruvate is administered and plasma levels of glucose are measured at defined time intervals; plasma glucose excursion is assumed to be proportional to the rate of pyruvate-stimulated hepatic gluconeogenesis.

Pancreoprivic diabetes mellitus

Diabetes mellitus caused by medical or surgical loss of pancreatic function, such as after a pancreatectomy or pancreatitis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, M., Vatner, D. & Shulman, G. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13, 572–587 (2017). https://doi.org/10.1038/nrendo.2017.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing