Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic application of histone deacetylase inhibitors for central nervous system disorders

Key Points

  • This Review focuses on the family of histone deacetylases (HDACs) and their regulatory roles in cells with specific application to neurons. It presents a structure–function analysis of four HDAC classes, the NAD+-independent and NAD+-dependent enzymes, subcellular localization, and substrates for deacetylation.

  • Furthermore, we provide a general overview of HDAC functions in the brain and discuss how HDAC biological functions in the brain may relate to CNS therapeutic intervention.

  • The application of HDAC inhibitors for the treatment of various CNS disorders has emerged in recent years. Chromatin remodelling and transcriptional modulation may underlie the efficacy of HDAC inhibitors in disease models of Rubinstein–Taybi syndrome, Rett syndrome and fragile X syndrome, motor neuron and polyglutamine diseases, and psychiatric and mood disorders. The effects on transcription are the most established therapeutically beneficial mechanism of HDAC inhibitors; however roles are emerging for acetylation in protein function and clearance.

  • Pharmacological inhibition of HDAC6 and sirtuin 2 (SIRT2) activities increase acetylation of non-histone substrates, modulating cytoskeleton and microtubule dynamics and protein aggregation, suggesting alternative therapeutic targets for HDAC inhibitors in Huntington's, Alzheimer's, Parkinson's and other protein misfolding diseases. Pharmacological targeting of HDAC6 may also affect autophagy, a cellular pathway responsible for degradation of misfolded and aggregated proteins.

  • Anti-inflammatory and anti-apoptotic properties of HDAC inhibitors may have broad application in the treatment of a range of CNS disorders, including multiple sclerosis. Research suggesting benefits for HDAC mediated suppression of microglia activation are discussed.

  • HDAC inhibitors affect cellular metabolic pathways, and more specifically restore the defective cholesterol metabolism in models of Niemann–Pick type C disease. A link between metabolism and ageing and the specific roles for sirtuins in regulating these processes suggests potential therapeutic benefits and is discussed in the context of different disease models.

  • A summary of the current state of development of HDAC inhibitors and chemical, biochemical and biological properties of these small molecules is provided. The use of HDAC inhibitors as CNS drugs is dependent upon the medicinal chemistry development of next generation HDAC inhibitors and their ability to cross the blood–brain barrier.

Abstract

Histone deacetylases (HDACs) — enzymes that affect the acetylation status of histones and other important cellular proteins — have been recognized as potentially useful therapeutic targets for a broad range of human disorders. Pharmacological manipulations using small-molecule HDAC inhibitors — which may restore transcriptional balance to neurons, modulate cytoskeletal function, affect immune responses and enhance protein degradation pathways — have been beneficial in various experimental models of brain diseases. Although mounting data predict a therapeutic benefit for HDAC-based therapy, drug discovery and development of clinical candidates face significant challenges. Here, we summarize the current state of development of HDAC therapeutics and their application for the treatment of human brain disorders such as Rubinstein–Taybi syndrome, Rett syndrome, Friedreich's ataxia, Huntington's disease and multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of HDAC inhibitors on chromatin remodelling and transcription.
Figure 2: Therapeutic targeting CNS diseases with small-molecule inhibitors.
Figure 3: Schematic of representative HDAC effects in the nucleus and cytoplasm.
Figure 4: Role of HDACs and HATs in CNS disorders.
Figure 5: Structures of common and newly reported bioactive hydroxamate and non-hydroxamate HDAC inhibitors and sirtuin ligands.

Similar content being viewed by others

References

  1. Hardy, J. & Orr, H. The genetics of neurodegenerative diseases. J. Neurochem. 97, 1690–1699 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Coppede, F., Mancuso, M., Siciliano, G., Migliore, L. & Murri, L. Genes and the environment in neurodegeneration. Biosci. Rep. 26, 341–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Dosunmu, R., Wu, J., Basha, M. R. & Zawia, N. H. Environmental and dietary risk factors in Alzheimer's disease. Expert Rev. Neurother. 7, 887–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Krichmar, J. L. & Edelman, G. M. Brain-based devices for the study of nervous systems and the development of intelligent machines. Artif. Life 11, 63–77 (2005).

    Article  PubMed  Google Scholar 

  5. Broderick, D. F. Neuroimaging in neuropsychiatry. Psychiatr. Clin. North Am. 28, 549–566 (2005).

    Article  PubMed  Google Scholar 

  6. Gallen, C. C. Strategic challenges in neurotherapeutic pharmaceutical development. NeuroRx 1, 165–180 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature 432, 855–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Davie, J. R. & Spencer, V. A. Control of histone modifications. J. Cell. Biochem. 75 (Suppl. 32), 141–148 (1999).

    Article  Google Scholar 

  9. Langley, B., Gensert, J. M., Beal, M. F. & Ratan, R. R. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr. Drug Targets CNS Neurol. Disord. 4, 41–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Bhaumik, S. R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nature Struct. Mol. Biol. 14, 1008–1016 (2007).

    Article  CAS  Google Scholar 

  11. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Matsuyama, A. et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 21, 6820–6831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michan, S. & Sinclair, D. Sirtuins in mammals: insights into their biological function. Biochem. J. 404, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Gregoire, S. et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol. Cell. Biol. 27, 1280–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Kruhlak, M. J. et al. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem. 276, 38307–38319 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Neely, K. E. & Workman, J. L. The complexity of chromatin remodeling and its links to cancer. Biochim. Biophys. Acta 1603, 19–29 (2002).

    CAS  PubMed  Google Scholar 

  19. Sun, J. M., Spencer, V. A., Chen, H. Y., Li, L. & Davie, J. R. Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation. Methods 31, 12–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y. et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 22, 1168–1179 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nature Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  Google Scholar 

  22. Gregoretti, I. V., Lee, Y. M. & Goodson, H. V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, W. S., Parmigiani, R. B. & Marks, P. A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541–5552 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Marsoni, S., Damia, G. & Camboni, G. A work in progress: the clinical development of histone deacetylase inhibitors. Epigenetics 3, 164–171 (2008).

    Article  PubMed  Google Scholar 

  25. Abel, T. & Zukin, R. S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol. 8, 57–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morrison, B. E., Majdzadeh, N. & D'Mello, S. R. Histone deacetylases: focus on the nervous system. Cell. Mol. Life Sci. 64, 2258–2269 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Hahnen, E. et al. Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin. Investig. Drugs 17, 169–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Butler, R. & Bates, G. P. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nature Rev. Neurosci. 7, 784–796 (2006).

    Article  CAS  Google Scholar 

  29. Thiagalingam, S. et al. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann. NY Acad. Sci. 983, 84–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, S., Yan-Neale, Y., Zeremski, M. & Cohen, D. Transcription regulation by histone deacetylases. Novartis Found. Symp. 259, 238–245 (2004).

    CAS  PubMed  Google Scholar 

  31. Yang, W. M., Tsai, S. C., Wen, Y. D., Fejer, G. & Seto, E. Functional domains of histone deacetylase-3. J. Biol. Chem. 277, 9447–9454 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349–356 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wen, Y. D. et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc. Natl Acad. Sci. USA 97, 7202–7207 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin, M., Kettmann, R. & Dequiedt, F. Class IIa histone deacetylases: regulating the regulators. Oncogene 26, 5450–5467 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Majdzadeh, N., Morrison, B. E. & D'Mello, S. R. Class IIA HDACs in the regulation of neurodegeneration. Front. Biosci. 13, 1072–1082 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, C. L., McKinsey, T. A. & Olson, E. N. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol. Cell. Biol. 22, 7302–7312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fischle, W. et al. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J. Biol. Chem. 276, 35826–35835 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA 104, 17335–17340 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones, P. et al. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg. Med. Chem. Lett. 18, 1814–1819 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, A. H. & Yang, X. J. Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol. Cell. Biol. 21, 5992–6005 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bertos, N. R., Wang, A. H. & Yang, X. J. Class II histone deacetylases: structure, function, and regulation. Biochem. Cell Biol. 79, 243–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, C. L., McKinsey, T. A. & Olson, E. N. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc. Natl Acad. Sci. USA 98, 7354–7359 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petrie, K. et al. The histone deacetylase 9 gene encodes multiple protein isoforms. J. Biol. Chem. 278, 16059–16072 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Grozinger, C. M. & Schreiber, S. L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl Acad. Sci. USA 97, 7835–7840 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kao, H. Y. et al. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J. Biol. Chem. 276, 47496–47507 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Ellis, J. J. et al. CaM kinase IIdeltaC phosphorylation of 14-3-3β in vascular smooth muscle cells: activation of class II HDAC repression. Mol. Cell Biochem. 242, 153–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Tong, J. J., Liu, J., Bertos, N. R. & Yang, X. J. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res. 30, 1114–1123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao, L., Cueto, M. A., Asselbergs, F. & Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277, 25748–25755 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, H., Hu, Q., Kaufman, A., D'Ercole, A. J. & Ye, P. Developmental expression of histone deacetylase 11 in the murine brain. J. Neurosci. Res. 86, 537–543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gan, L. & Mucke, L. Paths of convergence: sirtuins in aging and neurodegeneration. Neuron 58, 10–14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sauve, A. A., Wolberger, C., Schramm, V. L. & Boeke, J. D. The biochemistry of sirtuins. Annu. Rev. Biochem. 75, 435–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. North, B. J., Schwer, B., Ahuja, N., Marshall, B. & Verdin, E. Preparation of enzymatically active recombinant class III protein deacetylases. Methods 36, 338–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Denu, J. M. The Sir 2 family of protein deacetylases. Curr. Opin. Chem. Biol. 9, 431–440 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Vaquero, A. et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16, 93–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Senawong, T., Peterson, V. J. & Leid, M. BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression. Arch. Biochem. Biophys. 434, 316–325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823–6832 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Southwood, C. M., Peppi, M., Dryden, S., Tainsky, M. A. & Gow, A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res. 32, 187–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Vaquero, A. et al. SirT2 is a histone deacetylase with preference for histone H4 Lys16 during mitosis. Genes Dev. 20, 1256–1261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwer, B., North, B. J., Frye, R. A., Ott, M. & Verdin, E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 158, 647–657 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA 103, 10224–10229 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623–4635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Broide, R. S. et al. Distribution of histone deacetylases 1–11 in the rat brain. J. Mol. Neurosci. 31, 47–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Lu, J., McKinsey, T. A., Zhang, C. L. & Olson, E. N. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, C. L., McKinsey, T. A., Lu, J. R. & Olson, E. N. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J. Biol. Chem. 276, 35–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M. E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, X., Richon, V. M., Rifkind, R. A. & Marks, P. A. Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc. Natl Acad. Sci. USA 97, 1056–1061 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chawla, S., Vanhoutte, P., Arnold, F. J., Huang, C. L. & Bading, H. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85, 151–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Belfield, J. L., Whittaker, C., Cader, M. Z. & Chawla, S. Differential effects of Ca2+ and cAMP on transcription mediated by MEF2D and cAMP-response element-binding protein in hippocampal neurons. J. Biol. Chem. 281, 27724–27732 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Bolger, T. A. & Yao, T. P. Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J. Neurosci. 25, 9544–9553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berdeaux, R. et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Med. 13, 597–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Morrison, B. E. et al. Neuroprotection by histone deacetylase-related protein. Mol. Cell. Biol. 26, 3550–3564 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003). This provided a new role for HDAC6 that led to work by Kopito and others to show that HDAC6 and microtubules are involved in the clearance of protein aggregates in neurodegenerative disease ( J. Biol Chem. 280, 40282–40292; 2005).

    Article  CAS  PubMed  Google Scholar 

  77. Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280, 40282–40292 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Murphy, P. J., Morishima, Y., Kovacs, J. J., Yao, T. P. & Pratt, W. B. Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J. Biol. Chem. 280, 33792–33799 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Li, W. et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. J. Neurosci. 27, 2606–2616 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chen, D. & Guarente, L. SIR2: a potential target for calorie restriction mimetics. Trends Mol. Med. 13, 64–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Bishop, N. A. & Guarente, L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Rev. Genet. 8, 835–844 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett. 556, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Milne, J. C. & Denu, J. M. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr. Opin. Chem. Biol. 12, 11–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Outeiro, T. F., Marques, O. & Kazantsev, A. Therapeutic role of sirtuins in neurodegenerative disease. Biochim. Biophys. Acta 1782, 363–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Petrij, F. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Oike, Y. et al. Truncated CBP protein leads to classical Rubinstein–Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum. Mol. Genet. 8, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Alarcon, J. M. et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron 42, 947–959 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Barco, A. The Rubinstein–Taybi syndrome: modeling mental impairment in the mouse. Genes Brain Behav. 6 (Suppl. 1), 32–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Vecsey, C. G. et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27, 6128–6140 (2007). This important paper demonstrates the effects of HDAC inhibitors on restoration of memory loss by enhancing transcriptional expression of specific neuronal genes and suggests benefits of HDAC treatment for Rubinstein–Taybi syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Rev. Neurosci. 8, 355–367 (2007).

    Article  CAS  Google Scholar 

  94. Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neurosci. 9, 519–525 (2006). This paper provides in vivo evidence of therapeutic application HDAC inhibitors for the treatment of depression by a chromatin remodelling mechanism.

    Article  CAS  PubMed  Google Scholar 

  95. Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999). A landmark paper linking epigenetic regulation and pathology in Rett syndrome, paving the way for the potential therapeutic application of HDAC inhibitors for treating of this human disorder.

    Article  CAS  PubMed  Google Scholar 

  98. Chahrour, M. & Zoghbi, H. Y. The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. LaSalle, J. M. The odyssey of MeCP2 and parental imprinting. Epigenetics 2, 5–10 (2007).

    Article  PubMed  Google Scholar 

  100. Pandolfo, M. Friedreich's ataxia: clinical aspects and pathogenesis. Semin. Neurol. 19, 311–321 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Herman, D. et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nature Chem. Biol. 2, 551–558 (2006). This paper shows the efficacious effect of a benzamide-based HDAC inhibitor on heterochromatin-mediated repression, resulting in transcriptional reactivation of silenced frataxin gene product in Friedreich's ataxia.

    Article  CAS  Google Scholar 

  102. Rai, M. et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3, e1958 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. O'Donnell, W. T. & Warren, S. T. A decade of molecular studies of fragile X syndrome. Annu. Rev. Neurosci. 25, 315–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Garber, K., Smith, K. T., Reines, D. & Warren, S. T. Transcription, translation and fragile X syndrome. Curr. Opin. Genet. Dev. 16, 270–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Chandler, S. P., Kansagra, P. & Hirst, M. C. Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect. BMC Mol. Biol. 4, 3 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chiurazzi, P. et al. Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum. Mol. Genet. 8, 2317–2323 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Pietrobono, R. et al. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res. 30, 3278–3285 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tabolacci, E. et al. Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments. Eur. J. Hum. Genet. 13, 641–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Biacsi, R., Kumari, D. & Usdin, K. SIRT1 inhibition alleviates gene silencing in fragile X mental retardation syndrome. PLoS Genet. 4, e1000017 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Vaquero, A. et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450, 440–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Avila, A. M. et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest. 117, 659–671 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Riessland, M., Brichta, L., Hahnen, E. & Wirth, B. The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum. Genet. 120, 101–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Hirtz, D. et al. Challenges and opportunities in clinical trials for spinal muscular atrophy. Neurology 65, 1352–1357 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Kernochan, L. E. et al. The role of histone acetylation in SMN gene expression. Hum. Mol. Genet. 14, 1171–1182 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Hahnen, E. et al. In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J. Neurochem. 98, 193–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Ryu, H. et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J. Neurochem. 93, 1087–1098 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Rouaux, C. et al. Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J. Neurosci. 27, 5535–5545 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Minamiyama, M. et al. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 13, 1183–1192 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Steffan, J. S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA 97, 6763–6768 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Luthi-Carter, R. et al. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. Hum. Mol. Genet. 11, 1927–1937 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genet. 35, 76–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Serra, H. G. et al. Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum. Mol. Genet. 13, 2535–2543 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Tsai, C. C. et al. Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc. Natl Acad. Sci. USA 101, 4047–4052 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Helmlinger, D., Tora, L. & Devys, D. Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet. 22, 562–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Nakamura, K. et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet. 10, 1441–1448 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. La Spada, A. R., Wilson, E. M., Lubahn, D.B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. Helmlinger, D. et al. Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum. Mol. Genet. 13, 1257–1265 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Evert, B. O. et al. Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation. J. Neurosci. 26, 11474–11486 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Steffan, J. S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001). This demonstrated for the first time efficacy of HDAC inhibitors in neurodegeneration models.

    Article  CAS  PubMed  Google Scholar 

  131. Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl Acad. Sci. USA 100, 2041–2046 (2003). This paper showed the benefits of a HDAC inhibitor (voronistat) in a mouse model of neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ferrante, R. J. et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418–9427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Thomas, E. A. et al. The histone deacetylase inhibitor, HDACi 4b, ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc. Natl Acad. Sci. USA (in the press).

  134. Sadri-Vakili, G. & Cha, J. H. Histone deacetylase inhibitors: a novel therapeutic approach to Huntington's disease (complex mechanism of neuronal death). Curr. Alzheimer Res. 3, 403–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Bates, E. A., Victor, M., Jones, A. K., Shi, Y. & Hart, A. C. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci. 26, 2830–2838 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pallos, J. et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet. 1 Sep 2008 (doi:10.1093/hmg/ddn273).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fernandez-Funez, P. et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408, 101–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet. 37, 349–350 (2005). This paper provides genetic and pharmacological evidence relating to possible the protective effects of SIRT1 activation in in vivo neurodegeneration models.

    Article  CAS  PubMed  Google Scholar 

  139. Shao, J. & Diamond, M. I. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum. Mol. Genet. 16 (Spec. No. 2), R115–R123 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Imarisio, S. et al. Huntington's disease: from pathology and genetics to potential therapies. Biochem. J. 412, 191–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Ross, C. A. & Thompson, L. M. Transcription meets metabolism in neurodegeneration. Nature Med. 12, 1239–1241 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Kazantsev, A. G. & Hersch, S. M. Drug targeting of dysregulated transcription in Huntington's disease. Prog. Neurobiol. 83, 249–259 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Oliveira, J. M. et al. Mitochondrial-dependent Ca2+ handling in Huntington's disease striatal cells: effect of histone deacetylase inhibitors. J. Neurosci. 26, 11174–11186 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571–3583 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Berke, S. J. & Paulson, H. L. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr. Opin. Genet. Dev. 13, 253–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Rubinsztein, D. C. et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1, 11–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, Y. et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell. Biol. 28, 1688–1701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Outeiro, T. F. et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516–519 (2007). Provides evidence regarding the feasibility of a novel treatment approach for neurodegeneration using selective inhibitors of SIRT2.

    Article  CAS  PubMed  Google Scholar 

  150. Raine, C. S. Multiple sclerosis: immune system molecule expression in the central nervous system. J. Neuropathol. Exp. Neurol. 53, 328–337 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. McFarland, H. F. & Martin, R. Multiple sclerosis: a complicated picture of autoimmunity. Nature Immunol. 8, 913–919 (2007).

    Article  CAS  Google Scholar 

  152. Dheen, S. T., Kaur, C. & Ling, E. A. Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 14, 1189–1197 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Camelo, S. et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 164, 10–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Gray, S. G. & Dangond, F. Rationale for the use of histone deacetylase inhibitors as a dual therapeutic modality in multiple sclerosis. Epigenetics 1, 67–75 (2006).

    Article  PubMed  Google Scholar 

  155. Ren, M., Leng, Y., Jeong, M., Leeds, P. R. & Chuang, D. M. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem. 89, 1358–1367 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Faraco, G. et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol. Pharmacol. 70, 1876–1884 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Kim, H. J. et al. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther. 321, 892–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Langley, B. et al. Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21waf1/cip1 in cell cycle-independent neuroprotection. J. Neurosci. 28, 163–176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chuang, D. M. The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann. NY Acad. Sci. 1053, 195–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Giorgini, F. et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J. Biol. Chem. 283, 7390–7400 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  162. Nixon, R. A. Niemann–Pick type C disease and Alzheimer's disease: the APP-endosome connection fattens up. Am. J. Pathol. 164, 757–761 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hooper, N. M. Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem. Soc. Trans. 33, 335–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Roff, C. F. et al. Type C Niemann–Pick disease: use of hydrophobic amines to study defective cholesterol transport. Dev. Neurosci. 13, 315–319 (1991).

    Article  CAS  PubMed  Google Scholar 

  165. Vance, J. E. Lipid imbalance in the neurological disorder, Niemann–Pick C disease. FEBS Lett. 580, 5518–5524 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Garver, W. S. & Heidenreich, R. A. The Niemann–Pick C proteins and trafficking of cholesterol through the late endosomal/lysosomal system. Curr. Mol. Med. 2, 485–505 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Mukherjee, S. & Maxfield, F. R. Lipid and cholesterol trafficking in NPC. Biochim. Biophys. Acta 1685, 28–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Karten, B., Vance, D. E., Campenot, R. B. & Vance, J. E. Cholesterol accumulates in cell bodies, but is decreased in distal axons, of Niemann–Pick C1-deficient neurons. J. Neurochem. 83, 1154–1163 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Karten, B., Vance, D. E., Campenot, R. B. & Vance, J. E. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons. J. Biol. Chem. 278, 4168–4175 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Kim, S. J., Lee, B. H., Lee, Y. S. & Kang, K. S. Defective cholesterol traffic and neuronal differentiation in neural stem cells of Niemann–Pick type C disease improved by valproic acid, a histone deacetylase inhibitor. Biochem. Biophys. Res. Commun. 360, 593–599 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Li, X. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28, 91–106 (2007).

    Article  PubMed  CAS  Google Scholar 

  172. Valenza, M. et al. Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Hum. Mol. Genet. 16, 2187–2198 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Valenza, M. et al. Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington's disease. Neurobiol. Dis. 28, 133–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Trushina, E. et al. Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Hum. Mol. Genet. 15, 3578–3591 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Guarente, L. & Picard, F. Calorie restriction — the SIR2 connection. Cell 120, 473–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Bordone, L. & Guarente, L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature Rev. Mol. Cell Biol. 6, 298–305 (2005).

    Article  CAS  Google Scholar 

  177. Sinclair, D. A. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987–1002 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Guarente, L. Sirtuins in aging and disease. Cold Spring Harb. Symp. Quant. Biol. 72, 483–488 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Baur, J. A. & Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nature Rev. Drug Discov. 5, 493–506 (2006).

    Article  CAS  Google Scholar 

  181. Kim, D. et al. 2007. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 26, 3169–3179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen, J. et al. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J. Biol. Chem. 280, 40364–40374 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Catoire, H. et al. Sirtuin inhibition protects from the polyalanine muscular dystrophy protein PABPN1. Hum. Mol. Genet. 17, 2108–2117 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Li, Y., Xu, W., McBurney, M. W. & Longo, V. D. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell. Metab. 8, 38–48 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Green, K. et al. Nicotinamide restores cognition in AD transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. (in the press).

  186. Jung, M. Inhibitors of histone deacetylase as new anticancer agents. Curr. Med. Chem. 8, 1505–1511 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Vigushin, D. M. et al. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res. 7, 971–976 (2001).

    CAS  PubMed  Google Scholar 

  188. Wang, C. et al. Histone acetylation and the cell-cycle in cancer. Front. Biosci. 6, D610–D629 (2001).

    Article  CAS  PubMed  Google Scholar 

  189. Secrist, J. P., Zhou, X. & Richon, V. M. HDAC inhibitors for the treatment of cancer. Curr. Opin. Investig. Drugs 4, 1422–1427 (2003).

    CAS  PubMed  Google Scholar 

  190. Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl Acad. Sci. USA 101, 15064–15069 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mai, A. et al. Synthesis and biological evaluation of 2-, 3-, and 4-acylaminocinnamyl-N-hydroxyamides as novel synthetic HDAC inhibitors. Med. Chem. 1, 245–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Yoshida, M. et al. Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother. Pharmacol. 48 (Suppl. 1), S20–S26 (2001).

    Article  CAS  PubMed  Google Scholar 

  193. Lu, Q. et al. Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors. J. Med. Chem. 47, 467–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Liu, T., Kapustin, G. & Etzkorn, F. A. Design and synthesis of a potent histone deacetylase inhibitor. J. Med. Chem. 50, 2003–2006 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Curtin, M. & Glaser, K. Histone deacetylase inhibitors: the Abbott experience. Curr. Med. Chem. 10, 2373–2392 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Khan, N. et al. Determination of the class and isoform selectivity of small molecule HDAC inhibitors. Biochem. J. 409, 581–589 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Khan, N. et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 409, 581–589 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Glaser, K. B. et al. Differential protein acetylation induced by novel histone deacetylase inhibitors. Biochem. Biophys. Res. Commun. 325, 683–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Mai, A. et al. Exploring the connection unit in the HDAC inhibitor pharmacophore model: novel uracil-based hydroxamates. Bioorg Med. Chem. Lett. 15, 4656–4661 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Perez-Balado, C. et al. Bispyridinium dienes: histone deacetylase inhibitors with selective activities. J. Med. Chem. 50, 2497–2505 (2007).

    Article  CAS  PubMed  Google Scholar 

  201. Arts, J. et al. R306465 is a novel potent inhibitor of class I histone deacetylases with broad-spectrum antitumoral activity against solid and haematological malignancies. Br. J. Cancer 97, 1344–1353 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Haggarty, S. J., Koeller, K. M., Wong, J. C., Butcher, R. A. & Schreiber, S. L. Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol. 10, 383–396 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. Mai, A. et al. Discovery of (aryloxopropenyl)pyrrolyl hydroxyamides as selective inhibitors of class IIa histone deacetylase homologue HD1-A. J. Med. Chem. 46, 4826–4829 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA 100, 4389–4394 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Glaser, K. B. HDAC inhibitors: clinical update and mechanism-based potential. Biochem. Pharmacol. 74, 659–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Beckers, T. et al. Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int. J. Cancer 121, 1138–1148 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Hess-Stumpp, H., Bracker, T. U., Henderson, D. & Politz, O. MS-275, a potent orally available inhibitor of histone deacetylases — the development of an anticancer agent. Int. J. Biochem. Cell Biol. 39, 1388–1405 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Hu, E. et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J. Pharmacol. Exp. Ther. 307, 720–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  209. Simonini, M. V. et al. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc. Natl Acad. Sci. USA 103, 1587–1592 (2006). This important paper describes the application of HDAC inhibitors for the treatment of CNS disorders, using one of the first benzamide-based brain-permeable HDAC inhibitors developed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang, B. et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res. 1226, 181–191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  212. Marcotte, P. A. et al. Fluorescence assay of SIRT protein deacetylases using an acetylated peptide substrate and a secondary trypsin reaction. Anal. Biochem. 332, 90–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  213. Galletti, P. et al. Diverse effects of natural antioxidants on cyclosporin cytotoxicity in rat renal tubular cells. Nephrol. Dial. Transplant. 20, 1551–1558 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Grozinger, C. M., Chao, E. D., Blackwell, H. E., Moazed, D. & Schreiber, S. L. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276, 38837–38843 (2001).

    Article  CAS  PubMed  Google Scholar 

  216. Mai, A. et al. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J. Med. Chem. 48, 7789–7795 (2005).

    Article  CAS  PubMed  Google Scholar 

  217. Napper, A. D. et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem. 48, 8045–8054 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Trapp, J. et al. Structure–activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (Sirtuins). ChemMedChem 2, 1419–1431 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Pardridge, W. M. Brain drug development and brain drug targeting. Pharm. Res. 24, 1729–1732 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Maxwell for critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey G. Kazantsev.

Related links

Related links

FURTHER INFORMATION

Allen Institute for Brain Science

Glossary

Chromatin remodelling

Defines effects of epigenetic modifiers on the dynamic state of silent versus active chromatin, which consists of differently packaged histones.

Nuclear localization signal

An amino-acid consensus within a protein sequence that determines nuclear localization.

Nuclear export signal

An amino-acid consensus within a protein sequence that determines protein exit from the nucleus.

S phase

The phase of the cell cycle when DNA is synthesized (replicated).

Purkinje cells

Large neurons with extensive dendritic arbor in the cerebellar cortex. Patients with spinocerebellar ataxia type 1 (SCA1) or SCA7 manifest cerebellar ataxia with degeneration of Purkinje cells, which is caused by polyglutamine extensions in the SCA1 and SCA7 genes.

Amyotrophic lateral sclerosis

(ALS). Is the most common form of motor-neuron disease.It is characterized by progressive selective degeneration of motor neurons and is mostly sporadic; however about 20% of familial ALS is caused by mutations in superoxide dismutase 1 (SOD1).

Spinal and bulbar muscular atrophy

(SBMA). Also known as Kennedy's disease, SBMA is an X-linked genetic disorder caused by a polyglutamine-repeat expansion within the androgen receptor gene.

R6/2 mouse model of Huntington's disease

First transgenic mouse model of Huntington's disease (HD), which is characterized by short life-span and robust neurological phenotype. The transgene encodes a polypeptide derived from the first exon 1 of the HD gene encoding the polyglutamine expansion. Expression of the transgene causes neurological phenotypes and extensive formation of neuronal inclusions and cytoplasmic aggregates.

α-synuclein

Mutations in the α-synuclein gene product, which is of unknown function, have been identified in familial Parkinson's disease (PD). α-synuclein protein readily forms insoluble aggregates, and is thought to have a key role in PD pathology.

Kynurenine pathway

Pathway leading to tryptophan degradation via a sequence of biochemical reactions and formation of bioactive intermediates such as kynurenic acid.

Oculopharyngeal muscular dystrophy

An autosomal dominant mutation causing extension of the naturally occurring 10 alanine sequence up to a maximum of 17 alanines, resulting in fibril formation of PABPN1, a nuclear protein, and the development of late-onset muscular dystrophy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazantsev, A., Thompson, L. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7, 854–868 (2008). https://doi.org/10.1038/nrd2681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing