Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases

Key Points

  • Colony-stimulating factors (CSFs) are pleiotropic, but each has its own unique biological role.

  • All CSFs control myeloid cell numbers, but each has a level of specificity in regard to its target cells and effects.

  • Preclinical and/or clinical data suggest that targeting granulocyte–macrophage CSF (GM-CSF), CSF1, granulocyte CSF (G-CSF) or IL-3 could be useful in the treatment of numerous autoimmune and/or inflammatory pathologies, including rheumatoid arthritis and multiple sclerosis. Further investigation of the potential of targeting CSFs in other pathologies is warranted.

  • CSF targeting, as well as associated patient stratification, should be based on the specific CSF biology.

  • There is not necessarily an inverse relationship between the effects of CSF blockade and administration of the protein itself on a particular pathology.

Abstract

Granulocyte–macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF; also known as CSF1), granulocyte colony-stimulating factor (G-CSF) and interleukin-3 (IL-3) can each play a part in the host response to injury and infection, and there is burgeoning interest in targeting these CSFs in inflammatory and autoimmune disorders, as well as in cancer. For success in clinical medicine, therapeutic targeting will need to be delineated from current strategies. The individual CSFs have unique biological roles, suggesting that they could be used to target specific conditions. This Review compares the CSFs, with a focus on how they could be targeted, discusses the relevant clinical trial data and summarizes the potential clinical applications of targeting each CSF. Importantly, we discuss the novelty of CSF biology and attempt to clarify some of the surrounding misconceptions and issues that can affect therapeutic decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structures of the CSF receptors.
Figure 2: CSFs and control of target cell numbers and function in inflammation.

Similar content being viewed by others

References

  1. Burgess, A. W. & Metcalf, D. The nature and action of granulocyte-macrophage colony stimulating factors. Blood 56, 947–958 (1980).

    CAS  PubMed  Google Scholar 

  2. Metcalf, D. Hematopoietic cytokines. Blood 111, 485–491 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008).

    CAS  PubMed  Google Scholar 

  4. Hamilton, J. A., Stanley, E. R., Burgess, A. W. & Shadduck, R. K. Stimulation of macrophage plasminogen activator activity by colony-stimulating factors. J. Cell. Physiol. 103, 435–445 (1980).

    CAS  PubMed  Google Scholar 

  5. Masek-Hammerman, K. et al. Monoclonal antibody against macrophage colony-stimulating factor suppresses circulating monocytes and tissue macrophage function but does not alter cell infiltration/activation in cutaneous lesions or clinical outcomes in patients with cutaneous lupus erythematosus. Clin. Exp. Immunol. 183, 258–270 (2016).

    CAS  PubMed  Google Scholar 

  6. Molfino, N. A. et al. Phase 2, randomised placebo-controlled trial to evaluate the efficacy and safety of an anti-GM-CSF antibody (KB003) in patients with inadequately controlled asthma. BMJ Open 6, e007709 (2016).

    PubMed  PubMed Central  Google Scholar 

  7. Genovese, M. C. et al. Results from a phase IIa parallel group study of JNJ-40346527, an oral CSF-1R inhibitor, in patients with active rheumatoid arthritis despite disease-modifying antirheumatic drug therapy. J. Rheumatol. 42, 1752–1760 (2015).

    CAS  PubMed  Google Scholar 

  8. Burmester, G. et al. Long-term safety and efficacy of Mavrilimumab, a fully human granulocyte-macrophage colony-stimulating factor receptor-α (GM-CSFR-α) monoclonal antibody, in patients with rheumatoid arthritis (RA). Arthritis Rheumatol. 67 (Suppl. 10), abstr. 3111 (2015). This recent long-term (74-week) OLE study reports a sustained benefit of an anti-GM-CSFR mAb in individuals with RA ( n >300) without safety issues.

    Google Scholar 

  9. Hamilton, J. A. & Achuthan, A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol. 34, 81–89 (2013).

    CAS  PubMed  Google Scholar 

  10. Broughton, S. E. et al. The βc receptor family — structural insights and their functional implications. Cytokine 74, 247–258 (2015).

    CAS  PubMed  Google Scholar 

  11. Hamilton, J. A. GM-CSF as a target in inflammatory/autoimmune disease: current evidence and future therapeutic potential. Expert Rev. Clin. Immunol. 11, 457–465 (2015).

    CAS  PubMed  Google Scholar 

  12. Wicks, I. P. & Roberts, A. W. Targeting GM-CSF in inflammatory diseases. Nat. Rev. Rheumatol. 12, 37–48 (2016).

    CAS  PubMed  Google Scholar 

  13. Zhan, Y. et al. GM-CSF increases cross-presentation and CD103 expression by mouse CD8 spleen dendritic cells. Eur. J. Immunol. 41, 2585–2595 (2011).

    CAS  PubMed  Google Scholar 

  14. Ghirelli, C., Zollinger, R. & Soumelis, V. Systematic cytokine receptor profiling reveals GM-CSF as a novel TLR-independent activator of human plasmacytoid predendritic cells. Blood 115, 5037–5040 (2010).

    CAS  PubMed  Google Scholar 

  15. Min, L. et al. Cutting edge: granulocyte-macrophage colony-stimulating factor is the major CD8+ T cell-derived licensing factor for dendritic cell activation. J. Immunol. 184, 4625–4629 (2010).

    CAS  PubMed  Google Scholar 

  16. Hamilton, J. A. Rheumatoid arthritis: opposing actions of haemopoietic growth factors and slow-acting anti-rheumatic drugs. Lancet 342, 536–539 (1993). This original 'CSF network' hypothesis linked the pro-inflammatory actions of the CSFs with those of other pro-inflammatory cytokines (IL-1 and TNF) in a positive loop to help to explain the chronicity of inflammatory lesions.

    CAS  PubMed  Google Scholar 

  17. Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    CAS  PubMed  Google Scholar 

  18. Sonderegger, I. et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J. Exp. Med. 205, 2281–2294 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Croxford, A. L. et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity 43, 502–514 (2015).

    CAS  PubMed  Google Scholar 

  20. Su, S., Wu, W., He, C., Liu, Q. & Song, E. Breaking the vicious cycle between breast cancer cells and tumor-associated macrophages. Oncoimmunology 3, e953418 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Wu, L. et al. Pathogenic IL-23 signaling is required to initiate GM-CSF-driven autoimmune myocarditis in mice. Eur. J. Immunol. 46, 582–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hansen, G. et al. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 134, 496–507 (2008). This paper described the crystal structure of the human GM-CSFR as an unusual dodecamer formed from an association of two hexamers containing two molecules each of the ligand, the receptor α-chain and the receptor β-chain).

    CAS  PubMed  Google Scholar 

  23. Broughton, S. E. et al. Conformational changes in the GM-CSF receptor suggest a molecular mechanism for affinity conversion and receptor signaling. Structure 24, 1271–1281 (2016).

    CAS  PubMed  Google Scholar 

  24. van de Laar, L., Coffer, P. J. & Woltman, A. M. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 119, 3383–3393 (2012).

    CAS  PubMed  Google Scholar 

  25. Raza, S. et al. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. J. Leukoc. Biol. 96, 167–183 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Campbell, I. K., Bendele, A., Smith, D. A. & Hamilton, J. A. Granulocyte-macrophage colony stimulating factor exacerbates collagen induced arthritis in mice. Ann. Rheum. Dis. 56, 364–368 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Llop-Guevara, A. et al. A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure. PLoS ONE 9, e88714 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. van Nieuwenhuijze, A. E. et al. Transgenic expression of GM-CSF in T cells causes disseminated histiocytosis. Am. J. Pathol. 184, 184–199 (2014).

    CAS  PubMed  Google Scholar 

  29. Egea, L., Hirata, Y. & Kagnoff, M. F. GM-CSF: a role in immune and inflammatory reactions in the intestine. Expert Rev. Gastroenterol. Hepatol. 4, 723–731 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhattacharya, P. et al. GM-CSF: an immune modulatory cytokine that can suppress autoimmunity. Cytokine 75, 261–271 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Campbell, I. K. et al. Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice. J. Immunol. 161, 3639–3644 (1998). This paper was the first evidence for a pro-inflammatory role of endogenous GM-CSF by showing that GM-CSF-deficient mice were protected from collagen-induced arthritis.

    CAS  PubMed  Google Scholar 

  32. Cook, A. D., Braine, E. L., Campbell, I. K., Rich, M. J. & Hamilton, J. A. Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res. 3, 293–298 (2001). This paper was the first to show that a mAb against GM-CSF can suppress an inflammatory disease. It demonstrated that therapeutic administration of a mAb against GM-CSF suppressed collagen-induced arthritis in the effector phase of disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McQualter, J. L. et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194, 873–882 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lam, R. S. et al. GM-CSF and uPA are required for Porphyromonas gingivalis-induced alveolar bone loss in a mouse periodontitis model. Immunol. Cell Biol. 93, 705–715 (2015).

    CAS  PubMed  Google Scholar 

  35. Son, B. K. et al. Granulocyte macrophage colony-stimulating factor is required for aortic dissection/intramural haematoma. Nat. Commun. 6, 6994 (2015).

    CAS  PubMed  Google Scholar 

  36. Shiomi, A. et al. GM-CSF but not IL-17 is critical for the development of severe interstitial lung disease in SKG mice. J. Immunol. 193, 849–859 (2014).

    CAS  PubMed  Google Scholar 

  37. van Nieuwenhuijze, A. E. et al. Complementary action of granulocyte macrophage colony-stimulating factor and interleukin-17A induces interleukin-23, receptor activator of nuclear factor-κB ligand, and matrix metalloproteinases and drives bone and cartilage pathology in experimental arthritis: rationale for combination therapy in rheumatoid arthritis. Arthritis Res. Ther. 17, 163 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Xu, Y., Hunt, N. H. & Bao, S. The role of granulocyte-macrophage colony-stimulating factor in acute intestinal inflammation. Cell Res. 18, 1220–1229 (2008).

    CAS  PubMed  Google Scholar 

  39. Samarakoon, A. et al. CD45 regulates GM-CSF, retinoic acid and T-cell homing in intestinal inflammation. Mucosal Immunol. 9, 1514–1527 (2016).

    CAS  PubMed  Google Scholar 

  40. Khajah, M., Millen, B., Cara, D. C., Waterhouse, C. & McCafferty, D. M. Granulocyte-macrophage colony-stimulating factor (GM-CSF): a chemoattractive agent for murine leukocytes in vivo. J. Leukoc. Biol. 89, 945–953 (2011).

    CAS  PubMed  Google Scholar 

  41. Griseri, T., McKenzie, B. S., Schiering, C. & Powrie, F. Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation. Immunity 37, 1116–1129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Griseri, T. et al. Granulocyte macrophage colony-stimulating factor-activated eosinophils promote interleukin-23 driven chronic colitis. Immunity 43, 187–199 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Song, C. et al. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J. Exp. Med. 212, 1869–1882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pearson, C. et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. eLife 5, e10066 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. del Rio, M. L., Bernhardt, G., Rodriguez-Barbosa, J. I. & Forster, R. Development and functional specialization of CD103+ dendritic cells. Immunol. Rev. 234, 268–281 (2010).

    CAS  PubMed  Google Scholar 

  46. King, I. L., Kroenke, M. A. & Segal, B. M. GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J. Exp. Med. 207, 953–961 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Greter, M. et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36, 1031–1046 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Edelson, B. T. et al. Batf3-dependent CD11blow/− peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE 6, e25660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiao, Z. et al. The closely related CD103+ dendritic cells (DCs) and lymphoid-resident CD8+ DCs differ in their inflammatory functions. PLoS ONE 9, e91126 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. Campbell, I. K. et al. Differentiation of inflammatory dendritic cells is mediated by NF-κB1-dependent GM-CSF production in CD4 T cells. J. Immunol. 186, 5468–5477 (2011).

    CAS  PubMed  Google Scholar 

  51. Ko, H. J. et al. GM-CSF-responsive monocyte-derived dendritic cells are pivotal in Th17 pathogenesis. J. Immunol. 192, 2202–2209 (2014).

    CAS  PubMed  Google Scholar 

  52. Naik, S. H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    CAS  PubMed  Google Scholar 

  53. Louis, C. et al. Specific contributions of CSF-1 and GM-CSF to the dynamics of the mononuclear phagocyte system. J. Immunol. 195, 134–144 (2015).

    CAS  PubMed  Google Scholar 

  54. Helft, J. et al. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42, 1197–1211 (2015).

    CAS  PubMed  Google Scholar 

  55. Achuthan, A. et al. Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. J. Clin. Invest. 126, 3453–3466 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Hamilton, J. A. & Tak, P. P. The dynamics of macrophage lineage populations in inflammatory and autoimmune diseases. Arthritis Rheum. 60, 1210–1221 (2009).

    PubMed  Google Scholar 

  57. Soler Palacios, B. et al. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile. J. Pathol. 235, 515–526 (2015).

    CAS  PubMed  Google Scholar 

  58. Ilmarinen, P., Moilanen, E. & Kankaanranta, H. Regulation of spontaneous eosinophil apoptosis— a neglected area of importance. J. Cell Death 7, 1–9 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Singh, P. et al. GM-CSF enhances macrophage glycolytic activity in vitro and improves detection of inflammation in vivo. J. Nucl. Med. 57, 1428–1435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Subramanian, M., Thorp, E. & Tabas, I. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling. Circ. Res. 116, e13–e24 (2015).

    CAS  PubMed  Google Scholar 

  61. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    CAS  PubMed  Google Scholar 

  62. Fleetwood, A. J., Lawrence, T., Hamilton, J. A. & Cook, A. D. GM-CSF and M-CSF (CSF-1)-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities — implications for CSF blockade in inflammation. J. Immunol. 178, 5245–5252 (2007).

    CAS  PubMed  Google Scholar 

  63. Verreck, F. A. et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl Acad. Sci. USA 101, 4560–4565 (2004).

    CAS  PubMed  Google Scholar 

  64. Willart, M. A. et al. Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J. Exp. Med. 209, 1505–1517 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cates, E. C. et al. Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. J. Immunol. 173, 6384–6392 (2004).

    CAS  PubMed  Google Scholar 

  66. Sielska, M. et al. Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response. J. Pathol. 230, 310–321 (2013).

    CAS  PubMed  Google Scholar 

  67. Egea, L. et al. GM-CSF produced by nonhematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa. J. Immunol. 190, 1702–1713 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Huen, S. C. et al. GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 26, 1334–1345 (2015).

    CAS  PubMed  Google Scholar 

  69. Bernasconi, E., D'Angelo, F., Michetti, P. & Velin, D. Critical role of the GM-CSF signaling pathway in macrophage pro-repair activities. Pathobiology 81, 183–189 (2014).

    CAS  PubMed  Google Scholar 

  70. Fleetwood, A. J., Dinh, H., Cook, A. D., Hertzog, P. J. & Hamilton, J. A. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J. Leukoc. Biol. 86, 411–421 (2009).

    CAS  PubMed  Google Scholar 

  71. Lacey, D. C. et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J. Immunol. 188, 5752–5765 (2012).

    CAS  PubMed  Google Scholar 

  72. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 12, 568–575 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sheng, W. et al. STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation. Cell Res. 24, 1387–1402 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Noster, R. et al. IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci. Transl. Med. 6, 241ra80 (2014).

    PubMed  Google Scholar 

  76. Carbajal, K. S. et al. Th cell diversity in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Immunol. 195, 2552–2559 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Grifka-Walk, H. M., Giles, D. A. & Segal, B. M. IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23. Eur. J. Immunol. 45, 2780–2786 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cao, Y. et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl. Med. 7, 287ra74 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Vogel, D. Y. et al. GM-CSF promotes migration of human monocytes across the blood brain barrier. Eur. J. Immunol. 45, 1808–1819 (2015).

    CAS  PubMed  Google Scholar 

  80. Hamilton, J. A. Colony stimulating factors, cytokines and monocyte-macrophages — some controversies. Immunol. Today 14, 18–24 (1993).

    CAS  PubMed  Google Scholar 

  81. Piper, C. et al. T cell expression of granulocyte-macrophage colony-stimulating factor in juvenile arthritis is contingent upon Th17 plasticity. Arthritis Rheumatol. 66, 1955–1960 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Reynolds, G. et al. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis. Ann. Rheum. Dis. 75, 899–907 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Greven, D. E. et al. Preclinical characterisation of the GM-CSF receptor as a therapeutic target in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1924–1930 (2015).

    CAS  PubMed  Google Scholar 

  84. Rauch, P. J. et al. Innate response activator B cells protect against microbial sepsis. Science 335, 597–601 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Weber, G. F. et al. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J. Exp. Med. 211, 1243–1256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hilgendorf, I. et al. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation 129, 1677–1687 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 7, 310ra166 (2015).

    PubMed  Google Scholar 

  88. Magri, G. et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat. Immunol. 15, 354–364 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kelso, M. L., Elliott, B. R., Haverland, N. A., Mosley, R. L. & Gendelman, H. E. Granulocyte-macrophage colony stimulating factor exerts protective and immunomodulatory effects in cortical trauma. J. Neuroimmunol. 278, 162–173 (2015).

    CAS  PubMed  Google Scholar 

  90. Schabitz, W. R. et al. A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). J. Cereb. Blood Flow Metab. 28, 29–43 (2008).

    PubMed  Google Scholar 

  91. Schweizerhof, M. et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat. Med. 15, 802–807 (2009). This paper demonstrated that GM-CSF has a role in bone cancer pain and can itself induce pain.

    CAS  PubMed  Google Scholar 

  92. Bali, K. K. et al. Transcriptional mechanisms underlying sensitization of peripheral sensory neurons by granulocyte-/granulocyte-macrophage colony stimulating factors. Mol. Pain 9, 48 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. Ridwan, S., Bauer, H., Frauenknecht, K., von Pein, H. & Sommer, C. J. Distribution of granulocyte-monocyte colony-stimulating factor and its receptor α-subunit in the adult human brain with specific reference to Alzheimer's disease. J. Neural Transm. (Vienna) 119, 1389–1406 (2012).

    CAS  Google Scholar 

  94. Cook, A. D. et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res. Ther. 14, R199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cook, A. D. et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in inflammatory and arthritic pain. Ann. Rheum. Dis. 72, 265–270 (2013).

    CAS  PubMed  Google Scholar 

  96. Reed, J. A. et al. GM-CSF action in the CNS decreases food intake and body weight. J. Clin. Invest. 115, 3035–3044 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hamilton, J. A., Davis, J., Pobjoy, J. & Cook, A. D. GM-CSF is not essential for optimal fertility or for weight control. Cytokine 57, 30–31 (2012).

    CAS  PubMed  Google Scholar 

  98. Kim, D. H. et al. The role of GM-CSF in adipose tissue inflammation. Am. J. Physiol. Endocrinol. Metab. 295, E1038–E1046 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Robertson, S. A., Roberts, C. T., Farr, K. L., Dunn, A. R. & Seamark, R. F. Fertility impairment in granulocyte-macrophage colony-stimulating factor-deficient mice. Biol. Reprod. 60, 251–261 (1999).

    CAS  PubMed  Google Scholar 

  100. Burmester, G. R. et al. Mavrilimumab, a human monoclonal antibody targeting GM-CSF receptor-α, in subjects with rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase I, first-in-human study. Ann. Rheum. Dis. 70, 1542–1549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Burmester, G. R. et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann. Rheum. Dis. 72, 1445–1452 (2013).

    CAS  PubMed  Google Scholar 

  102. Takeuchi, T. et al. Efficacy and safety of mavrilimumab in Japanese subjects with rheumatoid arthritis: findings from a Phase IIa study. Mod. Rheumatol. 25, 21–30 (2015).

    CAS  PubMed  Google Scholar 

  103. Burmester, G. R. et al. Efficacy and safety of mavrilimumab, a fully human GM-CSFR-α monoclonal antibody in patients with rheumatoid arthritis: primary results from the earth explorer 1 study. Ann. Rheum. Dis. 74 (Suppl 2), 78 (2015).

    Google Scholar 

  104. McInnes, I. B. et al. Rapid onset of clinical benefit in patients with RA treated with mavrilimumab, a fully human monoclonal antibody targeting GM-CSFR-α: subanalysis of the phase IIb earth explorer 1 study. Ann. Rheum. Dis. 74 (Suppl 2), 723 (2015).

    Google Scholar 

  105. Kremer, J. M. et al. Patient-reported outcomes (PROS) during treatment with mavrilimumab, a fully human monoclonal antibody targeting GM-CSFR-α, in the phase IIb earth explorer 1 study. Ann. Rheum. Dis. 74 (Suppl 2), 483 (2015).

    Google Scholar 

  106. Kremer, J. M. et al. Analysis of patient reported outcomes during treatment with mavrilimumab, a human monoclonal antibody targeting GM-CSFRa, in the randomized phase IIb earth explorer 1 study. ACR abstr. 1485 (2014).

  107. Piccoli, L. et al. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. Nat. Commun. 6, 7375 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Behrens, F. et al. MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann. Rheum. Dis. 74, 1058–1064 (2015).

    CAS  PubMed  Google Scholar 

  109. Constantinescu, C. S. et al. Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2, e117 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Huizinga, T. W., Batalov, A., Yablanski, K., Stoilov, R. & Lloyd, E. W. T. First-in-patient study of Namilumab, an anti-GM-CSF monoclonal antibody, in active rheumatoid arthritis: results of the Priora Phase 1B study. Ann. Rheum. Dis. 74 (Suppl. 2), 733 (2015)

    Google Scholar 

  111. Huizinga, T. W. J. et al. Namilumab, an anti-granulocyte macrophage-colony stimulating factor (GM-CSF) monoclonal antibody: results of the first study in patients with mild-to-moderate rheumatoid arthritis (RA). Arthritis Rheumatol. 67 (Suppl. 10), abstr. 969 (2015).

    Google Scholar 

  112. Kokkonen, H. et al. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 62, 383–391 (2010).

    CAS  PubMed  Google Scholar 

  113. Deane, K. D. et al. The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum. 62, 3161–3172 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Raza, K. et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res. Ther. 7, R784–R795 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hume, D. A. & MacDonald, K. P. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119, 1810–1820 (2012).

    CAS  PubMed  Google Scholar 

  116. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    CAS  PubMed  Google Scholar 

  117. Sauter, K. A. et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J. Leukoc. Biol. 96, 265–274 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Lenzo, J. C. et al. Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol. Cell Biol. 90, 429–440 (2012).

    CAS  PubMed  Google Scholar 

  119. MacDonald, K. P. et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116, 3955–3963 (2010).

    CAS  PubMed  Google Scholar 

  120. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Akcora, D. et al. The CSF-1 receptor fashions the intestinal stem cell niche. Stem Cell Res. 10, 203–212 (2013).

    CAS  PubMed  Google Scholar 

  122. Jenkins, S. J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210, 2477–2491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Davies, L. C. et al. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat. Commun. 4, 1886 (2013).

    PubMed  Google Scholar 

  124. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Davies, L. C. et al. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol. 41, 2155–2164 (2011).

    CAS  PubMed  Google Scholar 

  126. Mossadegh-Keller, N. et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497, 239–243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rieger, M. A., Hoppe, P. S., Smejkal, B. M., Eitelhuber, A. C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009).

    CAS  PubMed  Google Scholar 

  128. Hashimoto, D. et al. Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. J. Exp. Med. 208, 1069–1082 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44, 200–205 (2012).

    CAS  Google Scholar 

  130. Nicholson, A. M. et al. CSF1R mutations link POLD and HDLS as a single disease entity. Neurology 80, 1033–1040 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Foulds, N. et al. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia caused by a novel R782G mutation in CSF1R. Sci. Rep. 5, 10042 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hofer, T. P. et al. Slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation. Blood 126, 2601–2610 (2015).

    CAS  PubMed  Google Scholar 

  133. Chitu, V. et al. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP). Neurobiol. Dis. 74, 219–228 (2015).

    CAS  PubMed  Google Scholar 

  134. Stanley, E. R. & Chitu, V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 6, a021857 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. Felix, J. et al. Structure and assembly mechanism of the signaling complex mediated by human CSF-1. Structure 23, 1621–1631 (2015).

    CAS  PubMed  Google Scholar 

  136. Ma, X. et al. Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure 20, 676–687 (2012).

    CAS  PubMed  Google Scholar 

  137. Liu, H. et al. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim. Biophys. Acta 1824, 938–945 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Masteller, E. L. & Wong, B. R. Targeting IL-34 in chronic inflammation. Drug Discov. Today 19, 1212–1216 (2014).

    CAS  PubMed  Google Scholar 

  139. Nandi, S. et al. Receptor-type protein-tyrosine phosphatase ζ is a functional receptor for interleukin-34. J. Biol. Chem. 288, 21972–21986 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Toh, M. L. et al. Bone- and cartilage-protective effects of a monoclonal antibody against colony-stimulating factor 1 receptor in experimental arthritis. Arthritis Rheumatol. 66, 2989–3000 (2014).

    CAS  PubMed  Google Scholar 

  141. Chitu, V. & Stanley, E. R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 18, 39–48 (2006).

    CAS  PubMed  Google Scholar 

  142. Patel, S. & Player, M. R. Colony-stimulating factor-1 receptor inhibitors for the treatment of cancer and inflammatory disease. Curr. Top. Med. Chem. 9, 599–610 (2009).

    CAS  PubMed  Google Scholar 

  143. Ghia, J. E. et al. Role of M-CSF dependent macrophages in colitis is driven by the nature of the inflammatory stimulus. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G770–G777 (2008).

    CAS  PubMed  Google Scholar 

  144. Segawa, M. et al. Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp. Cell Res. 314, 3232–3244 (2008).

    CAS  PubMed  Google Scholar 

  145. Garcia, S. et al. Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis. Arthritis Res. Ther. 18, 75 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. Alvarado-Vazquez, P. A. et al. Intra-articular administration of an antibody against CSF-1 receptor reduces pain-related behaviors and inflammation in CFA-induced knee arthritis. Neurosci. Lett. 584, 39–44 (2015).

    CAS  PubMed  Google Scholar 

  147. Park, S. J. et al. 2-(trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate suppresses osteoclast maturation and bone resorption by targeting macrophage-colony stimulating factor signaling. Mol. Cells 37, 628–635 (2014).

    PubMed  PubMed Central  Google Scholar 

  148. Chalmers, S. A. et al. Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. J. Autoimmun. 57, 42–52 (2015).

    CAS  PubMed  Google Scholar 

  149. Leblond, A. L. et al. Systemic and cardiac depletion of M2 macrophage through CSF-1R signaling inhibition alters cardiac function post myocardial infarction. PLoS ONE 10, e0137515 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    CAS  PubMed  Google Scholar 

  151. Swierczak, A. et al. The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunol. Res. 2, 765–776 (2014).

    CAS  PubMed  Google Scholar 

  152. Chitu, V., Gokhan, S., Nandi, S., Mehler, M. F. & Stanley, E. R. Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci. 39, 378–393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gomez-Nicola, D., Fransen, N. L., Suzzi, S. & Perry, V. H. Regulation of microglial proliferation during chronic neurodegeneration. J. Neurosci. 33, 2481–2493 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Olmos-Alonso, A. et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain 139, 891–907 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. Dagher, N. N. et al. Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J. Neuroinflammation 12, 139 (2015).

    PubMed  PubMed Central  Google Scholar 

  156. Luo, J. et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J. Exp. Med. 210, 157–172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6, e26317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Guan, Z. et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat. Neurosci. 19, 94–101 (2016). This paper provides evidence that CSF1 represents a pivotal link between peripheral nerve injury and the central mechanisms of neuropathic pain by demonstrating that injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent neuropathic pain.

    CAS  PubMed  Google Scholar 

  159. Okubo, M. et al. Macrophage-colony stimulating factor derived from injured primary afferent induces proliferation of spinal microglia and neuropathic pain in rats. PLoS ONE 11, e0153375 (2016).

    PubMed  PubMed Central  Google Scholar 

  160. Klein, D. et al. Targeting the colony stimulating factor 1 receptor alleviates two forms of Charcot-Marie-Tooth disease in mice. Brain 138, 3193–3205 (2015).

    PubMed  Google Scholar 

  161. Groh, J., Basu, R., Stanley, E. R. & Martini, R. Cell-surface and secreted isoforms of CSF-1 exert opposing roles in macrophage-mediated neural damage in Cx32-deficient mice. J. Neurosci. 36, 1890–1901 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Campbell, I. K., Rich, M. J., Bischof, R. J. & Hamilton, J. A. The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J. Leukoc. Biol. 68, 144–150 (2000). This paper was the first to show that a mAb against CSF1 can suppress inflammatory disease. It demonstrated that therapeutic administration of a mAb against CSF1 suppressed collagen-induced arthritis in the effector phase of disease.

    CAS  PubMed  Google Scholar 

  163. Hamilton, J. A. et al. Hypoxia enhances the proliferative response of macrophages to CSF-1 and their pro-survival response to TNF. PLoS ONE 7, e45853 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Satoh, T. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11, 936–944 (2010).

    CAS  PubMed  Google Scholar 

  165. Clavel, C., Ceccato, L., Anquetil, F., Serre, G. & Sebbag, M. Among human macrophages polarised to different phenotypes, the M-CSF-oriented cells present the highest pro-inflammatory response to the rheumatoid arthritis-specific immune complexes containing ACPA. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2015-208887 (2016).

  166. Vogelpoel, L. T. et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat. Commun. 5, 5444 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Jenkins, S. J. & Hume, D. A. Homeostasis in the mononuclear phagocyte system. Trends Immunol. 35, 358–367 (2014).

    CAS  PubMed  Google Scholar 

  168. Zhang, M. Z. et al. CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Invest. 122, 4519–4532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang, Y. et al. Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. Kidney Int. 88, 1274–1282 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Stutchfield, B. M. et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology 149, 1896–1909 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sauter, K. A. et al. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G533–G547 (2016).

    PubMed  PubMed Central  Google Scholar 

  172. Alexander, K. A. et al. CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J. Clin. Invest. 124, 4266–4280 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang, P. T. et al. Increase in the level of macrophage colony-stimulating factor in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 67, 429–430 (2008).

    CAS  PubMed  Google Scholar 

  174. Tian, S. et al. Urinary levels of RANTES and M-CSF are predictors of lupus nephritis flare. Inflamm. Res. 56, 304–310 (2007).

    CAS  PubMed  Google Scholar 

  175. Menke, J. et al. Colony-stimulating factor-1: a potential biomarker for lupus nephritis. J. Am. Soc. Nephrol. 26, 379–389 (2015).

    PubMed  Google Scholar 

  176. Korkosz, M., Bukowska-Strakova, K., Sadis, S., Grodzicki, T. & Siedlar, M. Monoclonal antibodies against macrophage colony-stimulating factor diminish the number of circulating intermediate and nonclassical (CD14++CD16+/CD14+CD16++) monocytes in rheumatoid arthritis patient. Blood 119, 5329–5330 (2012).

    CAS  PubMed  Google Scholar 

  177. Tap, W. D. et al. Structure-guided blockade of CSF1R Kinase in tenosynovial giant-cell tumor. N. Engl. J. Med. 373, 428–437 (2015).

    CAS  PubMed  Google Scholar 

  178. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an ivy foundation early phase clinical trials consortium phase II study. Neuro Oncol. 18, 557–564 (2016).

    PubMed  Google Scholar 

  179. Cornish, A. L., Campbell, I. K., McKenzie, B. S., Chatfield, S. & Wicks, I. P. G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 554–559 (2009).

    CAS  PubMed  Google Scholar 

  180. Eyles, J. L., Roberts, A. W., Metcalf, D. & Wicks, I. P. Granulocyte colony-stimulating factor and neutrophils — forgotten mediators of inflammatory disease. Nat. Clin. Pract. Rheumatol. 2, 500–510 (2006).

    CAS  PubMed  Google Scholar 

  181. Wright, H. L., Moots, R. J. & Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 593–601 (2014).

    CAS  PubMed  Google Scholar 

  182. Dalhoff, K. et al. Inhibition of neutrophil apoptosis and modulation of the inflammatory response by granulocyte colony-stimulating factor in healthy and ethanol-treated human volunteers. J. Infect. Dis. 178, 891–895 (1998).

    CAS  PubMed  Google Scholar 

  183. Stark, M. A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    CAS  PubMed  Google Scholar 

  184. Hartung, T. Anti-inflammatory effects of granulocyte colony-stimulating factor. Curr. Opin. Hematol. 5, 221–225 (1998).

    CAS  PubMed  Google Scholar 

  185. Joshi, A. et al. Transcription factor, promoter, and enhancer utilization in human myeloid cells. J. Leukoc. Biol. 97, 985–995 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Mehta, H. M., Glaubach, T. & Corey, S. J. Systems approach to phagocyte production and activation: neutrophils and monocytes. Adv. Exp. Med. Biol. 844, 99–113 (2014).

    PubMed  PubMed Central  Google Scholar 

  187. Roberts, A. W. G-CSF: a key regulator of neutrophil production, but that's not all! Growth Factors 23, 33–41 (2005).

    CAS  PubMed  Google Scholar 

  188. McMullin, M. F. & Finch, M. B. Felty's syndrome treated with rhG-CSF associated with flare of arthritis and skin rash. Clin. Rheumatol. 14, 204–208 (1995).

    CAS  PubMed  Google Scholar 

  189. Hayat, S. Q., Hearth-Holmes, M. & Wolf, R. E. Flare of arthritis with successful treatment of Felty's syndrome with granulocyte colony stimulating factor (GCSF). Clin. Rheumatol. 14, 211–212 (1995).

    CAS  PubMed  Google Scholar 

  190. Lawlor, K. E. et al. Critical role for granulocyte colony-stimulating factor in inflammatory arthritis. Proc. Natl Acad. Sci. USA 101, 11398–11403 (2004). This was the first report showing that endogenous G-CSF could drive inflammatory disease (arthritis), as G-CSF-deficient mice and mice treated with an anti-G-CSF mAb had reduced arthritis in two mouse models.

    CAS  PubMed  Google Scholar 

  191. Eyles, J. L. et al. A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood 112, 5193–5201 (2008).

    CAS  PubMed  Google Scholar 

  192. Christensen, A. D., Haase, C., Cook, A. D. & Hamilton, J. A. Granulocyte colony-stimulating factor (G-CSF) plays an important role in immune complex-mediated arthritis. Eur. J. Immunol. 46, 1235–1245 (2016).

    CAS  PubMed  Google Scholar 

  193. Christensen, A. D., Skov, S. & Haase, C. The role of neutrophils and G-CSF in DNFB-induced contact hypersensitivity in mice. Immun. Inflamm. Dis. 2, 21–34 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Rumble, J. M. et al. Neutrophil-related factors as biomarkers in EAE and MS. J. Exp. Med. 212, 23–35 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Goldberg, G. L. et al. G-CSF and neutrophils are nonredundant mediators of murine experimental autoimmune uveoretinitis. Am. J. Pathol. 186, 172–184 (2016).

    CAS  PubMed  Google Scholar 

  196. Bagaitkar, J. et al. NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis. Blood 126, 2724–2733 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Swierczak, A., Mouchemore, K. A., Hamilton, J. A. & Anderson, R. L. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev. 34, 735–751 (2015).

    CAS  PubMed  Google Scholar 

  198. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Brotfain, E. et al. Neutrophil functions in morbidly obese subjects. Clin. Exp. Immunol. 181, 156–163 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Ryder, E. et al. Association of obesity with leukocyte count in obese individuals without metabolic syndrome. Diabetes Metab. Syndr. 8, 197–204 (2014).

    PubMed  Google Scholar 

  201. Daltro, P. S. et al. Administration of granulocyte-colony stimulating factor accompanied with a balanced diet improves cardiac function alterations induced by high fat diet in mice. BMC Cardiovasc. Disord. 15, 162 (2015).

    PubMed  PubMed Central  Google Scholar 

  202. Egi, H. et al. Regulation of T helper type-1 immunity in hapten-induced colitis by host pretreatment with granulocyte colony-stimulating factor. Cytokine 23, 23–30 (2003).

    CAS  PubMed  Google Scholar 

  203. Kudo, T. et al. Recombinant human granulocyte colony-stimulating factor reduces colonic epithelial cell apoptosis and ameliorates murine dextran sulfate sodium-induced colitis. Scand. J. Gastroenterol. 43, 689–697 (2008).

    CAS  PubMed  Google Scholar 

  204. Lieschke, G. J. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746 (1994).

    CAS  PubMed  Google Scholar 

  205. Basu, S. et al. “Emergency” granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95, 3725–3733 (2000).

    CAS  PubMed  Google Scholar 

  206. Basu, S., Hodgson, G., Katz, M. & Dunn, A. R. Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation. Blood 100, 854–861 (2002).

    CAS  PubMed  Google Scholar 

  207. Hibbs, M. L. et al. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J. Immunol. 178, 6435–6443 (2007).

    CAS  PubMed  Google Scholar 

  208. Bugl, S. et al. Steady-state neutrophil homeostasis is dependent on TLR4/TRIF signaling. Blood 121, 723–733 (2013).

    CAS  PubMed  Google Scholar 

  209. Campbell, I. K. et al. Therapeutic targeting of the G-CSF receptor reduces neutrophil trafficking and joint inflammation in antibody-mediated inflammatory arthritis. J. Immunol. 197, 4392–4402 (2016).

    CAS  PubMed  Google Scholar 

  210. Meshkibaf, S., Martins, A. J., Henry, G. T. & Kim, S. O. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages. Cytokine 78, 69–78 (2016).

    CAS  PubMed  Google Scholar 

  211. Dejaco, C. et al. An open-label pilot study of granulocyte colony-stimulating factor for the treatment of severe endoscopic postoperative recurrence in Crohn's disease. Digestion 68, 63–70 (2003).

    CAS  PubMed  Google Scholar 

  212. Wallner, S. et al. The granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity. Front. Cell Dev. Biol. 3, 48 (2015).

    PubMed  PubMed Central  Google Scholar 

  213. Stosser, S., Schweizerhof, M. & Kuner, R. Hematopoietic colony-stimulating factors: new players in tumor-nerve interactions. J. Mol. Med. (Berl.) 89, 321–329 (2011).

    Google Scholar 

  214. Carvalho, T. T. et al. Granulocyte-colony stimulating factor (G-CSF) induces mechanical hyperalgesia via spinal activation of MAP kinases and PI3K in mice. Pharmacol. Biochem. Behav. 98, 188–195 (2011).

    CAS  PubMed  Google Scholar 

  215. Carvalho, T. T. et al. Granulocyte-colony stimulating factor (G-CSF)-induced mechanical hyperalgesia in mice: role for peripheral TNFα, IL-1β and IL-10. Eur. J. Pharmacol. 749, 62–72 (2015).

    CAS  PubMed  Google Scholar 

  216. Liou, J. T., Lui, P. W., Liu, F. C., Lai, Y. S. & Day, Y. J. Exogenous granulocyte colony-stimulating factor exacerbate pain-related behaviors after peripheral nerve injury. J. Neuroimmunol. 232, 83–93 (2011).

    CAS  PubMed  Google Scholar 

  217. Chao, P. K. et al. Early systemic granulocyte-colony stimulating factor treatment attenuates neuropathic pain after peripheral nerve injury. PLoS ONE 7, e43680 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Kato, K. et al. Intravenous administration of granulocyte colony-stimulating factor for treating neuropathic pain associated with compression myelopathy: a phase I and IIa clinical trial. Eur. Spine J. 22, 197–204 (2013).

    PubMed  Google Scholar 

  219. Schneider, A. et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J. Clin. Invest. 115, 2083–2098 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Diederich, K., Schabitz, W. R. & Minnerup, J. Seeing old friends from a different angle: novel properties of hematopoietic growth factors in the healthy and diseased brain. Hippocampus 22, 1051–1057 (2012).

    PubMed  Google Scholar 

  221. Broughton, S. E. et al. Dual mechanism of interleukin-3 receptor blockade by an anti-cancer antibody. Cell Rep. 8, 410–419 (2014).

    CAS  PubMed  Google Scholar 

  222. Carr, P. D. et al. Crystal structure of the mouse interleukin-3 β-receptor: insights into interleukin-3 binding and receptor activation. Biochem. J. 463, 393–403 (2014).

    CAS  PubMed  Google Scholar 

  223. Hara, T. & Miyajima, A. Two distinct functional high affinity receptors for mouse interleukin-3 (IL-3). EMBO J. 11, 1875–1884 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Ihle, J. N. Interleukin-3 and hematopoiesis. Chem. Immunol. 51, 65–106 (1992).

    CAS  PubMed  Google Scholar 

  225. Lantz, C. S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).

    CAS  PubMed  Google Scholar 

  226. Kim, S. et al. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J. Immunol. 184, 1143–1147 (2010).

    CAS  PubMed  Google Scholar 

  227. Broughton, S. E. et al. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol. Rev. 250, 277–302 (2012).

    PubMed  Google Scholar 

  228. Esnault, S. et al. IL-3 maintains activation of the p90S6K/RPS6 pathway and increases translation in human eosinophils. J. Immunol. 195, 2529–2539 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Luo, X. J. et al. The interleukin 3 gene (IL3) contributes to human brain volume variation by regulating proliferation and survival of neural progenitors. PLoS ONE 7, e50375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Hercus, T. R. et al. Signalling by the βc family of cytokines. Cytokine Growth Factor Rev. 24, 189–201 (2013).

    CAS  PubMed  Google Scholar 

  231. Ebner, S. et al. A novel role for IL-3: human monocytes cultured in the presence of IL-3 and IL-4 differentiate into dendritic cells that produce less IL-12 and shift Th cell responses toward a Th2 cytokine pattern. J. Immunol. 168, 6199–6207 (2002).

    CAS  PubMed  Google Scholar 

  232. Elliott, M. J. et al. Recombinant human interleukin-3 and granulocyte-macrophage colony-stimulating factor show common biological effects and binding characteristics on human monocytes. Blood 74, 2349–2359 (1989).

    CAS  PubMed  Google Scholar 

  233. Hart, P. H., Whitty, G. A., Burgess, D. R. & Hamilton, J. A. Regulation by interleukin-3 of human monocyte pro-inflammatory mediators. Similarities with granulocyte-macrophage colony-stimulating factor. Immunology 71, 76–82 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Andrade, P. R., Amadeu, T. P., Nery, J. A., Pinheiro, R. O. & Sarno, E. N. CD123, the plasmacytoid dendritic cell phenotypic marker, is abundant in leprosy type 1 reaction. Br. J. Dermatol. 172, 268–271 (2015).

    CAS  PubMed  Google Scholar 

  235. Firestein, G. S. et al. Cytokines in chronic inflammatory arthritis. I. Failure to detect T cell lymphokines (interleukin 2 and interleukin 3) and presence of macrophage colony-stimulating factor (CSF-1) and a novel mast cell growth factor in rheumatoid synovitis. J. Exp. Med. 168, 1573–1586 (1988).

    CAS  PubMed  Google Scholar 

  236. Heller, R. A. et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl Acad. Sci. USA 94, 2150–2155 (1997).

    CAS  PubMed  Google Scholar 

  237. Ferraccioli, G. et al. Circulating levels of interleukin 10 and other cytokines in rheumatoid arthritis treated with cyclosporin A or combination therapy. J. Rheumatol. 25, 1874–1879 (1998).

    CAS  PubMed  Google Scholar 

  238. Yamada, R. et al. Association between a single-nucleotide polymorphism in the promoter of the human interleukin-3 gene and rheumatoid arthritis in Japanese patients, and maximum-likelihood estimation of combinatorial effect that two genetic loci have on susceptibility to the disease. Am. J. Hum. Genet. 68, 674–685 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Oren, H., Erbay, A. R., Balci, M. & Cehreli, S. Role of novel biomarkers of inflammation in patients with stable coronary heart disease. Angiology 58, 148–155 (2007).

    CAS  PubMed  Google Scholar 

  240. Xiu, M. H. et al. Increased IL-3 serum levels in chronic patients with schizophrenia: associated with psychopathology. Psychiatry Res. 229, 225–229 (2015).

    CAS  PubMed  Google Scholar 

  241. Piguet, P. F., Grau, G. E., Hauser, C. & Vassalli, P. Tumor necrosis factor is a critical mediator in hapten induced irritant and contact hypersensitivity reactions. J. Exp. Med. 173, 673–679 (1991).

    CAS  PubMed  Google Scholar 

  242. Mach, N. et al. Involvement of interleukin-3 in delayed-type hypersensitivity. Blood 91, 778–783 (1998).

    CAS  PubMed  Google Scholar 

  243. Bruhl, H. et al. Important role of interleukin-3 in the early phase of collagen-induced arthritis. Arthritis Rheum. 60, 1352–1361 (2009).

    PubMed  Google Scholar 

  244. Srivastava, R. K. et al. IL-3 attenuates collagen-induced arthritis by modulating the development of Foxp3+ regulatory T cells. J. Immunol. 186, 2262–2272 (2011).

    CAS  PubMed  Google Scholar 

  245. Yogesha, S. D. et al. IL-3 inhibits TNF-α-induced bone resorption and prevents inflammatory arthritis. J. Immunol. 182, 361–370 (2009).

    CAS  PubMed  Google Scholar 

  246. Renner, K. et al. IL-3 contributes to development of lupus nephritis in MRL/lpr mice. Kidney Int. 88, 1088–1098 (2015).

    CAS  PubMed  Google Scholar 

  247. Weber, G. F. et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 347, 1260–1265 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Chousterman, B. G. & Swirski, F. K. Innate response activator B cells: origins and functions. Int. Immunol. 27, 537–541 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Zambrano, A., Otth, C., Mujica, L., Concha, I. I. & Maccioni, R. B. Interleukin-3 prevents neuronal death induced by amyloid peptide. BMC Neurosci. 8, 82 (2007).

    PubMed  PubMed Central  Google Scholar 

  250. Rojo, L. E., Fernandez, J. A., Maccioni, A. A., Jimenez, J. M. & Maccioni, R. B. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer's disease. Arch. Med. Res. 39, 1–16 (2008).

    CAS  PubMed  Google Scholar 

  251. Asquith, K. L. et al. The IL-3/IL-5/GM-CSF common receptor plays a pivotal role in the regulation of Th2 immunity and allergic airway inflammation. J. Immunol. 180, 1199–1206 (2008).

    CAS  PubMed  Google Scholar 

  252. Panousis, C. et al. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors. MAbs 8, 436–453 (2016).

    CAS  PubMed  Google Scholar 

  253. Sun, Q. et al. Simultaneous antagonism of interleukin-5, granulocyte-macrophage colony-stimulating factor, and interleukin-3 stimulation of human eosinophils by targetting the common cytokine binding site of their receptors. Blood 94, 1943–1951 (1999).

    CAS  PubMed  Google Scholar 

  254. Owczarek, C. M. et al. Novel anti-βc receptor antibody targets multiple effector cell populations in human nasal polyps transplanted into immunodeficient transgenic human interleukin-3 (IL-3)/granulocyte-macrophage colony stimulating factor (GM-CSF) knock-in mice. Am. Thorac. Soc. Meet. 31 abstr. A7903 (2016). This recent report highlights the potential for anti-β c receptor therapy in inflammatory disease.

    Google Scholar 

  255. Munoz, L. et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 86, 1261–1269 (2001).

    CAS  PubMed  Google Scholar 

  256. He, S. Z. et al. A Phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leuk. Lymphoma 56, 1406–1415 (2015).

    CAS  PubMed  Google Scholar 

  257. Busfield, S. J. et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia 28, 2213–2221 (2014).

    CAS  PubMed  Google Scholar 

  258. Smith, B. D. et al. First-in man, phase 1 study of CSL362 (anti-IL3Rα / anti-CD123 monoclonal antibody) in patients with CD123+ acute myeloid leukemia (AML) in CR at high risk for early relapse. Blood 124, 120 (2014).

    Google Scholar 

  259. Oon, S. et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight 1, e86131 (2016). This recent paper highlights the potential for anti-IL-3R therapy in inflammatory disease.

    PubMed  PubMed Central  Google Scholar 

  260. Frankel, A. E. et al. Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacytoid dendritic cell neoplasm patients. Blood 124, 385–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Sun, Q. et al. Monoclonal antibody 7G3 recognizes the N-terminal domain of the human interleukin-3 (IL-3) receptor α-chain and functions as a specific IL-3 receptor antagonist. Blood 87, 83–92 (1996).

    CAS  PubMed  Google Scholar 

  262. Jin, L. et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor α chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5, 31–42 (2009).

    CAS  PubMed  Google Scholar 

  263. van Vollenhoven, R. F., Nagy, G. & Tak, P. P. Early start and stop of biologics: has the time come? BMC Med. 12, 25 (2014).

    PubMed  PubMed Central  Google Scholar 

  264. Hamilton, J. A. Coordinate and noncoordinate colony stimulating factor formation by human monocytes. J. Leukoc. Biol. 55, 355–361 (1994).

    CAS  PubMed  Google Scholar 

  265. Santiago, E. et al. Granulocyte colony-stimulating factor induces neutrophils to secrete macrophage colony-stimulating factor. Cytokine 15, 299–304 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank N. Wilson, A. Lopez and F. Dodeller for fruitful discussion and R. Sallay for typing the Review. J.A.H. and A.D.C. were supported in part from grants (1032147, 1085240 and 1080560) and J.A.H. by a Senior Principal Research Fellowship from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Hamilton.

Ethics declarations

Competing interests

The employer of J.A.H. and A.D.C., the University of Melbourne, has licensed technologies in this area to MorphoSys AG. P.P.T. is an employee and shareholder of GlaxoSmithKline (GSK); GSK is evaluating the efficacy and safety of GSK3196165, an investigational anti-GM-CSF antibody, in patients with rheumatoid arthritis and inflammatory hand osteoarthritis.

PowerPoint slides

Glossary

Haematopoiesis

The production of blood cells and platelets, which usually occurs in the bone marrow.

Plasmacytoid dendritic cells

(pDCs). A subset of DCs that specializes in the production of type I interferons. These cells promote antiviral immune responses and are implicated in the pathogenesis of autoimmune diseases that are characterized by a type I interferon gene expression signature.

Invariant natural killer T cells

(Also known as type I natural killer T cells). This well-characterized subset of CD1d-dependent cells expresses an invariant T cell receptor α-chain. These cells recognize lipid antigens presented by CD1d and respond rapidly to danger signals and pro-inflammatory cytokines. Once activated, they engage in multiple effector functions.

Dendritic cell

(DC). An antigen-presenting cell that processes antigen material and presents it on its cell surface to T cells as its main function within the immune system. DCs act as messengers between the innate and the adaptive immune systems.

CD103+ dendritic cells

(CD103+ DCs). A subset of the mouse DC population that is distinguished from other DCs by αE integrin expression. They can be found in many, if not all, lymphoid and non-lymphoid organs.

Myasthenia gravis

A rare, chronic autoimmune disease marked by muscle weakness due to a defect in the action of acetylcholine at neuromuscular junctions.

Experimental autoimmune encephalomyelitis

(EAE). An inflammatory, demyelinating disease of the central nervous system that is the most commonly used model for multiple sclerosis. It is also the prototype for T cell-mediated autoimmune diseases.

T helper cells

(TH cells). A type of T cell that has an important role in the immune system. They help other immune cells by releasing T cell cytokines, thereby helping to regulate immune responses. They are essential for B cell antibody class switching, the activation and growth of cytotoxic T cells and maximizing the bactericidal activity of phagocytes, such as macrophages.

FOXP3+ regulatory T cells

The transcription factor forkhead box P3 (FOXP3) serves as a lineage-specific factor of regulatory T cells, which play a central part in the negative regulation of the immune response to numerous antigens.

CD11c+MHCII+ macrophages

A population of macrophages that is usually present at sites of tissue inflammation. These cells are often called monocyte-derived dendritic cells.

Macrophage polarization

Macrophages respond to diverse microenvironmental signals that trigger different responses, thus resulting in differential polarization patterns into a spectrum of phenotypes from M1 to M2. They are classically activated towards the M1 phenotype by microbial products or interferon-γ and can thereby eradicate invading organisms and promote type I immune responses. Alternative activation by stimulation with interleukin-4 (IL-4), IL-13 or IL-10 drives macrophages towards the M2 phenotype, which is characterized by hyporesponsiveness to pro-inflammatory stimuli and involvement in processes such as debris scavenging, angiogenesis, tissue remodelling, wound healing and the promotion of type II immunity.

Pulmonary alveolar proteinosis

(PAP). A rare lung disease in which an abnormal accumulation of pulmonary surfactant occurs, thereby interfering with gas exchange.

Mononuclear phagocyte system

(MPS). Part of the immune system that consists of the phagocytic cells located in reticular connective tissue. It comprises monocytes, macrophages and dendritic cells and was formerly termed the reticuloendothelial system.

LY6C blood monocytes

A subset of mouse blood monocytes that is generally believed to be the most mature subset and contributes to the immune system through its scavenging and patrolling functions. The analogous population in humans is CD16+ monocytes.

CD16+ monocytes

The most mature subset of human blood monocytes. This population is analogous to LY6C monocytes in mice.

Csf1op/Csf1op mice

These mice have an inactive colony-stimulating factor 1 (Csf1) gene, which results in a developmental defect in several macrophage lineage populations, including osteoclasts. They have an osteopetrotic (op) phenotype.

3xTg-AD mice

Triple-transgenic mice, harbouring presenilin 1 (PSEN1; also known as PS1), amyloid-β precursor protein (APP) and microtubule-associated protein tau (MAPT) transgenes. They progressively develop amyloid-β deposition and neurofibrillary tangles as in Alzheimer disease.

Neutropenia

The presence of abnormally few neutrophils in the blood, which leads to an increased susceptibility to infection.

Hyperalgesia

An increased sensitivity to pain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, J., Cook, A. & Tak, P. Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 16, 53–70 (2017). https://doi.org/10.1038/nrd.2016.231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.231

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research