Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Ten years of anti-vascular endothelial growth factor therapy

Abstract

The targeting of vascular endothelial growth factor A (VEGFA), a crucial regulator of both normal and pathological angiogenesis, has revealed innovative therapeutic approaches in oncology and ophthalmology. The first VEGFA inhibitor, bevacizumab, was approved by the US Food and Drug Administration in 2004 for the first-line treatment of metastatic colorectal cancer, and the first VEGFA inhibitors in ophthalmology, pegaptanib and ranibizumab, were approved in 2004 and 2006, respectively. To mark this tenth anniversary of anti-VEGFA therapy, we discuss the discovery of VEGFA, the successes and challenges in the development of VEGFA inhibitors and the impact of these agents on the treatment of cancers and ophthalmic diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery of VEGFA and VEGFA-targeted therapies.
Figure 2: VEGF signalling pathways and inhibitors.

References

  1. Folkman, J. & Klagsbrun, M. Angiogenic factors. Science 235, 442–447 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Ide, A. G., Baker, N. H. & Warren, S. L. Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol. 42, 891–899 (1939).

    Google Scholar 

  4. Algire, G. H., Chalkley, H. W., Legallais, F. Y. & Park, H. D. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl Cancer Inst. 6, 73–85 (1945).

    Article  Google Scholar 

  5. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Klagsbrun, M. & D'Amore, P. A. Regulators of angiogenesis. Annu. Rev. Physiol. 53, 217–239 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Med. 16, 1107–1111 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Adamis, A. P. et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445–450 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Aiello, L. P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. New Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Adamis, A. P. et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch. Ophthalmol. 114, 66–71 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Aiello, L. P. et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl Acad.Sci. USA 92, 10457–10461 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Ng, E. W. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5, 123–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Y. et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol. 293, 865–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Motzer, R. J. et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 24, 16–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Escudier, B. et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the Phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol. 27, 3312–3318 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99, 11393–11398 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Krupitskaya, Y. & Wakelee, H. A. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr. Opin. Investig. Drugs 10, 597–605 (2009).

    CAS  PubMed  Google Scholar 

  23. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Senger, D. R., Connolly, D. T., Van de Water, L., Feder, J. & Dvorak, H. F. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res. 50, 1774–1778 (1990).

    CAS  PubMed  Google Scholar 

  25. Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Connolly, D. T. et al. Human vascular permeability factor. Isolation from U937 cells. J. Biol. Chem. 264, 20017–20024 (1989).

    CAS  PubMed  Google Scholar 

  27. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling — in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Alitalo, K., Tammela, T. & Petrova, T. V. Lymphangiogenesis in development and human disease. Nature 438, 946–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bates, D. O. et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62, 4123–4131 (2002).

    CAS  PubMed  Google Scholar 

  33. Eswarappa, S. M. et al. Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157, 1605–1618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Semenza, G. L. Angiogenesis in ischemic and neoplastic disorders. Annu. Rev. Med. 54, 17–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Kaelin, W. G. Jr The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Jakeman, L. B., Winer, J., Bennett, G. L., Altar, C. A. & Ferrara, N. Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. J. Clin. Invest. 89, 244–253 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Terman, B. I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–1586 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Pajusola, K. et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res. 52, 5738–5473 (1992).

    CAS  PubMed  Google Scholar 

  40. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).

    CAS  PubMed  Google Scholar 

  42. Davis-Smyth, T., Chen, H., Park, J., Presta, L. G. & Ferrara, N. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J. 15, 4919–4927 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ambati, B. K. et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature 443, 993–997 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herbert, S. P. & Stainier, D. Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 551–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. & Shibuya, M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl Acad. Sci. USA 102, 1076–1081 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Fukumura, D. et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl Acad. Sci. USA 98, 2604–2609 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Eliceiri, B. P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4, 915–924 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell Biol. 8, 1223–1234 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Sun, Z. et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J. Exp. Med. 209, 1363–1377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Nagy, J. A., Chang, S. H., Dvorak, A. M. & Dvorak, H. F. Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer 100, 865–869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tolentino, M. J. et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103, 1820–1828 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kowanetz, M. & Ferrara, N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin. Cancer Res. 12, 5018–5022 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Kim, K. J., Li, B., Houck, K., Winer, J. & Ferrara, N. The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors 7, 53–64 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Warren, R. S., Yuan, H., Matli, M. R., Gillett, N. A. & Ferrara, N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest. 95, 1789–1797 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Borgstrom, P., Hillan, K. J. Sriramarao, P. & Ferrara, N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res. 56, 4032–4039 (1996).

    CAS  PubMed  Google Scholar 

  62. Gerber, H. P., Kowalski, J., Sherman, D., Eberhard, D. A. & Ferrara, N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res. 60, 6253–6258 (2000).

    CAS  PubMed  Google Scholar 

  63. Liang, W. C. et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J. Biol. Chem. 281, 951–961 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Shima, D. T. et al. Cloning and mRNA expression of vascular endothelial growth factor in ischemic retinas of Macaca fascicularis. Invest. Ophthalmol. Vis. Sci. 37, 1334–1340 (1996).

    CAS  PubMed  Google Scholar 

  65. Presta, L. G. et al. Humanization of an anti-VEGF monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57, 4593–4599 (1997).

    CAS  PubMed  Google Scholar 

  66. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  67. Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Gordon, M. S. et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol. 19, 843–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Ferrara, N., Mass, R. D., Campa, C. & Kim, R. Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu. Rev. Med. 58, 491–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Margolin, K. et al. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J. Clin. Oncol. 19, 851–856 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Scappaticci, F. A. et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J. Natl Cancer Inst. 99, 1232–1239 (2007).

    Article  PubMed  Google Scholar 

  73. Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 105, R15–R24 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sweeney, C. J. et al. The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res. 61, 3369–3372 (2001).

    CAS  PubMed  Google Scholar 

  75. Gerber, H. P. & Ferrara, N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 65, 671–680 (2005).

    CAS  PubMed  Google Scholar 

  76. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kabbinavar, F. et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 21, 60–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Giantonio, B. J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25, 1539–1544 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Bennouna, J. et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised Phase 3 trial. Lancet Oncol. 14, 29–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Sandler, A. et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell-lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-VEGF antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rini, B. I. et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J. Clin. Oncol. 26, 5422–5428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Escudier, B. et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol. 28, 2144–2150 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27, 4733–4740 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Kreisl, T. N. et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27, 740–745 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Chinot, O. L. et al. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tewari, K. S. et al. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med. 370, 734–743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pujade-Lauraine, E. et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized Phase III trial. J. Clin. Oncol. 32, 1302–1308 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Aghajanian, C. et al. OCEANS: a randomized, double-blind, placebo-controlled Phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol. 30, 2039–2045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burger, R. A. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med. 365, 2473–2483 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Plotkin, S. R. et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N. Engl. J. Med. 361, 358–367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Brufsky, A. M. et al. RIBBON-2: a randomized, double-blind, placebo-controlled, Phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 29, 4286–4293 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Robert, N. J. et al. RIBBON-1: randomized, double-blind, placebo-controlled, Phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol. 29, 1252–1260 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Miles, D. W. et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 28, 3239–3247 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Meadows, K. L. & Hurwitz, H. I. Anti-VEGF therapies in the clinic. Cold Spring Harb. Perspect. Med. 2, a006577 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Allegra, C. J. et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J. Clin. Oncol. 29, 11–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Allegra, C. J. et al. Bevacizumab in stage II-III colon cancer: 5-year update of the National Surgical Adjuvant Breast and Bowel Project C-08 trial. J. Clin. Oncol. 31, 359–364 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. de Gramont, A. et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a Phase 3 randomised controlled trial. Lancet Oncol. 13, 1225–1233 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Dienstmann, R., Salazar, R. & Tabernero, J. Personalizing colon cancer adjuvant therapy: selecting optimal treatments for individual patients. J. Clin. Oncol. 33, 1787–1796 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer 4, 361–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Strawn, L. M. et al. Flk-1 as a target for tumor growth inhibition. Cancer Res. 56, 3540–3545 (1996).

    CAS  PubMed  Google Scholar 

  105. Levitzki, A. & Mishani, E. Tyrphostins and other tyrosine kinase inhibitors. Annu. Rev. Biochem. 75, 93–109 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. McTigue, M. A. et al. Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: a key enzyme in angiogenesis. Structure 7, 319–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Levitzki, A. Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance. Annu. Rev. Pharmacol. Toxicol. 53, 161–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Manley, P. W., Martiny-Baron, G., Schlaeppi, J. M. & Wood, J. M. Therapies directed at vascular endothelial growth factor. Expert Opin. Investig. Drugs 11, 1715–1736 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Strumberg, D. Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc) 41, 773–784 (2005).

    Article  CAS  Google Scholar 

  111. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Brose, M. S. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, Phase 3 trial. Lancet 384, 319–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Haraldsdottir, S. & Shah, M. H. An update on clinical trials of targeted therapies in thyroid cancer. Curr. Opin. Oncol. 26, 36–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327–337 (2003).

    CAS  PubMed  Google Scholar 

  116. Faivre, S. et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol. 24, 25–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Sternberg, C. N. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized Phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Motzer, R. J., McCann, L. & Deen, K. Pazopanib versus sunitinib in renal cancer. N. Engl. J. Med. 369, 1970 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Hu-Lowe, D. D. et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin. Cancer Res. 14, 7272–7283 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Rini, B. I. et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised Phase 3 trial. Lancet 378, 1931–1939 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Wilhelm, S. M. et al. Regorafenib (BAY 73–4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 129, 245–255 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Grothey, A. et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, Phase 3 trial. Lancet 381, 303–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Robert, N. J. et al. Sunitinib plus paclitaxel versus bevacizumab plus paclitaxel for first-line treatment of patients with advanced breast cancer: a Phase III, randomized, open-label trial. Clin. Breast Cancer 11, 82–92 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bergh, J. et al. First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: results of a prospective, randomized Phase III study. J. Clin. Oncol. 30, 921–929 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Carrato, A. et al. Fluorouracil, leucovorin, and irinotecan plus either sunitinib or placebo in metastatic colorectal cancer: a randomized, Phase III trial. J. Clin. Oncol. 31, 1341–1347 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Schmoll, H. J. et al. Cediranib with mFOLFOX6 versus bevacizumab with mFOLFOX6 as first-line treatment for patients with advanced colorectal cancer: a double-blind, randomized Phase III study (HORIZON III). J. Clin. Oncol. 30, 3588–3595 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Blagoev, K. B. et al. Sunitinib does not accelerate tumor growth in patients with metastatic renal cell carcinoma. Cell Rep. 3, 277–281 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Hilberg, F. et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 68, 4774–4782 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Reck, M. et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME–Lung 1): a Phase 3, double-blind, randomised controlled trial. Lancet Oncol. 15, 143–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Richeldi, L. et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082 (2014).

    Article  PubMed  CAS  Google Scholar 

  135. Van Cutsem, E. et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a Phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 30, 3499–3506 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Tang, P. A. & Moore, M. J. Aflibercept in the treatment of patients with metastatic colorectal cancer: latest findings and interpretations. Therap. Adv. Gastroenterol. 6, 459–473 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. de Groot, J. F. et al. Phase II study of aflibercept in recurrent malignant glioma: a North American Brain Tumor Consortium study. J. Clin. Oncol. 29, 2689–2695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ramlau, R. et al. Aflibercept and docetaxel versus docetaxel alone after platinum failure in patients with advanced or metastatic non-small-cell lung cancer: a randomized, controlled Phase III trial. J. Clin. Oncol. 30, 3640–3647 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Clarke, J. M. & Hurwitz, H. I. Ziv-aflibercept: binding to more than VEGF-A — does more matter? Nat. Rev. Clin. Oncol. 10, 10–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Fischer, C. et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Bais, C. et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell 141, 166–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Fuchs, C. S. et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, Phase 3 trial. Lancet 383, 31–39 (2013).

    Article  PubMed  CAS  Google Scholar 

  143. Wilke, H. et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised Phase 3 trial. Lancet Oncol. 15, 1224–1235 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Garon, E. B. et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised Phase 3 trial. Lancet 384, 665–673 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Tabernero, J. et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, Phase 3 study. Lancet Oncol. 16, 499–508 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled Phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Sennino, B. & McDonald, D. M. Controlling escape from angiogenesis inhibitors. Nat. Rev. Cancer 12, 699–709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lu, K. V. et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22, 21–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cloughesy, T. et al. Onartuzumab plus bevacizumab versus placebo in recurrent glioblastoma (GBM): HGF and MGMT biomarker data. Proc. Am. Soc. Clin. Oncol. 33, 2015 (2015).

    Article  Google Scholar 

  150. Charakidis, M. & Boyer, M. Targeting MET and EGFR in NSCLC — what can we learn from the recently reported Phase III trial of onartuzumab in combination with erlotinib in advanced non-small cell lung cancer? Transl. Lung Cancer Res. 3, 395–396 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lassen, U. et al. Phase 1 dose-escalation study of the antiplacental growth factor monoclonal antibody RO5323441 combined with bevacizumab in patients with recurrent glioblastoma. Neuro Oncol. 17, 1007–1015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Snuderl, M. et al. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell 152, 1065–1076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Huang, H., Bhat, A., Woodnutt, G. & Lappe, R. Targeting the ANGPT–TIE2 pathway in malignancy. Nat. Rev. Cancer 10, 575–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Rigamonti, N. et al. Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep. 8, 696–706 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Liang, W. C. et al. Function blocking antibodies to neuropilin-1 generated from a designed human synthetic antibody phage library. J. Mol. Biol. 366, 815–829 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Johnson, L. et al. Anti-EGFL7 antibodies enhance stress-induced endothelial cell death and anti-VEGF efficacy. J. Clin. Invest. 123, 3997–4009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ince, W. L. et al. Association of k-RAS, b-RAF, and p53 status with the treatment effect of bevacizumab. J. Natl Cancer Inst. 97, 981–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Hegde, P. S. et al. Predictive impact of circulating vascular endothelial growth factor in four Phase III trials evaluating bevacizumab. Clin. Cancer Res. 19, 929–937 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Rini, B. I. et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J. Natl Cancer Inst. 103, 763–773 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jubb, A. M. & Harris, A. L. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol. 11, 1172–1183 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Secord, A. A., Nixon, A. B. & Hurwitz, H. I. The search for biomarkers to direct antiangiogenic treatment in epithelial ovarian cancer. Gynecol. Oncol. 135, 349–358 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Hanrahan, E. O. et al. Distinct patterns of cytokine and angiogenic factor modulation and markers of benefit for vandetanib and/or chemotherapy in patients with non-small-cell lung cancer. J. Clin. Oncol. 28, 193–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Xu, L. et al. Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1α, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Res. 69, 7905–7910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jain, R. K. et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat. Rev. Clin. Oncol. 6, 327–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Brauer, M. J. et al. Identification and analysis of in vivo VEGF downstream markers link VEGF pathway activity with efficacy of anti-VEGF therapies. Clin. Cancer Res. 19, 3681–3692 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. de Haas, S. et al. Genetic variability of VEGF pathway genes in six randomized Phase III trials assessing the addition of bevacizumab to standard therapy. Angiogenesis 17, 909–920 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Dellian, M., Witwer, B. P., Salehi, H. A., Yuan, F. & Jain, R. K. Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment [see comments]. Am. J. Pathol. 149, 59–71 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Sandmann, T. et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J. Clin. Oncol. (2015).

  170. Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085–3096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chung, A. S., Lee, J. & Ferrara, N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer 10, 505–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat. Biotech. 25, 911–920 (2007).

    Article  CAS  Google Scholar 

  173. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Finke, J. et al. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int. Immunopharmacol. 11, 856–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Ferrara, N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev. 21, 21–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Singh, M. et al. Anti-VEGF antibody therapy does not promote metastasis in genetically engineered mouse tumour models. J. Pathol. 227, 417–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Chung, A. S. et al. Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J. Pathol. 227, 404–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Bill, R. et al. Nintedanib is a highly effective therapeutic for neuroendocrine carcinoma of the pancreas (PNET) in the Rip1Tag2 transgenic mouse model. Clin. Cancer Res. 21, 4856–4865 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Miles, D. et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized Phase III trials. J. Clin. Oncol. 29, 83–88 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Singh, M. & Ferrara, N. Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nat. Biotech. 30, 648–657 (2012).

    Article  CAS  Google Scholar 

  182. Garner, A. in Pathobiology of Ocular Disease (eds Garner, A. & Klintworth, G. K.) 1625–1710 (Marcel Dekker, 1994).

    Google Scholar 

  183. Michaelson, I. C. The mode of development of the vascular system of the retina with some observations on its significance for certain retinal disorders. Trans. Ophthalmol. Soc. UK 68, 137–180 (1948).

    Google Scholar 

  184. Ashton, N. Observations on the choroidal circulation. Br. J. Ophthalmol. 36, 465–481 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wise, G. N. Retinal neovascularization. Trans. Am. Ophthalmol. Soc. 54, 729–826 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Adamis, A. P. et al. Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem. Biophys. Res. Commun. 193, 631–638 (1993).

    Article  CAS  PubMed  Google Scholar 

  187. Miller, J. W. et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145, 574–584 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Malecaze, F. et al. Detection of vascular endothelial growth factor mRNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch. Ophthalmol. 112, 1476–1482 (1994).

    Article  CAS  PubMed  Google Scholar 

  189. Tolentino, M. J. et al. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch. Ophthalmol. 114, 964–970 (1996).

    Article  CAS  PubMed  Google Scholar 

  190. Schwesinger, C. et al. Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am. J. Pathol. 158, 1161–1172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Krzystolik, M. G. et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch. Ophthalmol. 120, 338–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Qaum, T. et al. VEGF-initiated blood–retinal barrier breakdown in early diabetes. Invest. Ophthalmol. Vis. Sci. 42, 2408–2413 (2001).

    CAS  PubMed  Google Scholar 

  193. Miller, J. W., Le Couter, J., Strauss, E. C. & Ferrara, N. Vascular endothelial growth factor A in intraocular vascular disease. Ophthalmology 120, 106–114 (2013).

    Article  PubMed  Google Scholar 

  194. Gragoudas, E. S. et al. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Ryan, A. M. et al. Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol. Pathol. 27, 78–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  196. Hodge, W. G., Lalonde, R. G., Sampalis, J. & Deschenes, J. Once-weekly intraocular injections of ganciclovir for maintenance therapy of cytomegalovirus retinitis: clinical and ocular outcome. J. Infect. Dis. 174, 393–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  197. Ferrara, N., Damico, L., Shams, N., Lowman, H. & Kim, R. Developmemt of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26, 859–870 (2006).

    Article  PubMed  Google Scholar 

  198. Mordenti, J. et al. Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and Fab antibodies in rhesus monkeys following intravitreal administration. Toxicol. Pathol. 27, 536–544 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. Raghavan, M. & Bjorkman, P. J. Fc receptors and their interactions with immunoglobulins. Annu. Rev. Cell Dev. Biol. 12, 181–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  200. Reff, M. E., Hariharan, K. & Braslawsky, G. Future of monoclonal antibodies in the treatment of hematologic malignancies. Cancer Control 9, 152–166 (2002).

    Article  PubMed  Google Scholar 

  201. Nieminen, T. et al. Ophthalmic timolol: plasma concentration and systemic cardiopulmonary effects. Scand. J. Clin. Lab Invest. 67, 237–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Baca, M., Presta, L. G., O'Connor, S. J. & Wells, J. A. Antibody humanization using monovalent phage display. J. Biol. Chem. 272, 10678–10684 (1997).

    Article  CAS  PubMed  Google Scholar 

  203. Muller, Y. A. et al. VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 Å resolution and mutational analysis of the interface. Structure 6, 1153–1167 (1998).

    Article  CAS  PubMed  Google Scholar 

  204. Gaudreault, J., Fei, D., Rusit, J., Suboc, P. & Shiu, V. Preclinical pharmacokinetics of ranibizumab (rhuFabV2) after a single intravitreal administration. Invest. Ophthalmol. Vis. Sci. 46, 726–733 (2005).

    Article  PubMed  Google Scholar 

  205. Rosenfeld, P. J. et al. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 112, 1048–1053 (2005).

    Article  PubMed  Google Scholar 

  206. Heier, J. S. et al. Ranibizumab for treatment of neovascular age-related macular degeneration: a Phase I/II multicenter, controlled, multidose study. Opthalmology 113, 633–642. e4 (2006).

    Article  Google Scholar 

  207. Rosenfeld, P. J. et al. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1419–1431 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Brown, D. M. et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1432–1444 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Brown, D. M. et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology 116, 57–65. e5 (2009).

    Article  PubMed  Google Scholar 

  210. Frennesson, C., Nilsson, U. L., Peebo, B. B. & Nilsson, S. E. Significant improvements in near vision, reading speed, central visual field and related quality of life after ranibizumab treatment of wet age-related macular degeneration. Acta Ophthalmol. 88, 420–425 (2010).

    Article  PubMed  Google Scholar 

  211. Regillo, C. D. et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER study year 1. Am. J. Ophthalmol. 145, 239–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Schmidt-Erfurth, U. et al. Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study. Ophthalmology 118, 831–839 (2011).

    Article  PubMed  Google Scholar 

  213. Busbee, B. G. et al. Twelve-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology 120, 1046–1056 (2013).

    Article  PubMed  Google Scholar 

  214. Abedi, F., Wickremasinghe, S., Islam, A. F., Inglis, K. M. & Guymer, R. H. Anti-VEGF treatment in neovascular age-related macular degeneration: a treat-and-extend protocol over 2 years. Retina 34, 1531–1538 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Bressler, N. M. et al. Estimated cases of legal blindness and visual impairment avoided using ranibizumab for choroidal neovascularization: non-Hispanic white population in the United States with age-related macular degeneration. Arch. Ophthalmol. 129, 709–717 (2011).

    Article  PubMed  Google Scholar 

  216. Brown, D. M. et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a Phase III study. Ophthalmology 117, 1124–1133. e1 (2010).

    Article  PubMed  Google Scholar 

  217. Campochiaro, P. A. et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a Phase III study. Ophthalmology 117, 1102–1112. e1 (2010).

    Article  PubMed  Google Scholar 

  218. Nguyen, Q. D. et al. Ranibizumab for diabetic macular edema: results from 2 Phase III randomized trials: RISE and RIDE. Ophthalmology 119, 789–801 (2012).

    Article  PubMed  Google Scholar 

  219. Diabetic Retinopathy Clinical Research Network. et al. Rationale for the diabetic retinopathy clinical research network treatment protocol for center-involved diabetic macular edema. Ophthalmology 118, e5–e14 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Varma, R. et al. Improved vision-related function after ranibizumab for macular edema after retinal vein occlusion: results from the BRAVO and CRUISE trials. Ophthalmology 119, 2108–2118 (2012).

    Article  PubMed  Google Scholar 

  221. Brown, D. M. et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two Phase III trials: RISE and RIDE. Ophthalmology 120, 2013–2022 (2013).

    Article  PubMed  Google Scholar 

  222. Bressler, N. M. et al. Vision-related function after ranibizumab treatment for diabetic macular edema: results from RIDE and RISE. Ophthalmology 121, 2461–2472 (2014).

    Article  PubMed  Google Scholar 

  223. Campochiaro, P. A. et al. Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab: the RETAIN study. Ophthalmology 121, 209–219 (2014).

    Article  PubMed  Google Scholar 

  224. Elman, M. J. et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 118, 609–614 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Diabetic Retinopathy Clinical Research Network. et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: three-year randomized trial results. Ophthalmology 119, 2312–2318 (2012).

  226. Diabetic Retinopathy Clinical Research Network. et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117, 1064–1077. e35 (2010).

  227. Campochiaro, P. A. et al. Monthly versus as-needed ranibizumab injections in patients with retinal vein occlusion: the SHORE study. Ophthalmology 121, 2432–2442 (2014).

    Article  PubMed  Google Scholar 

  228. Group, C. R. et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 364, 1897–1908 (2011).

    Article  Google Scholar 

  229. IVAN Study Investigators et al. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology 119, 1399–1411 (2012).

  230. Avery, R. L. et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br. J. Ophthalmol. 98, 1636–1641 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Heier, J. S. et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119, 2537–2548 (2012).

    Article  PubMed  Google Scholar 

  232. Diabetic Retinopathy Clinical Research Network. et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N. Engl. J. Med. 372, 1193–1203 (2015).

  233. Pecen, P. E. & Kaiser, P. K. Current Phase 1/2 research for neovascular age-related macular degeneration. Curr. Opin. Ophthalmol. 26, 188–193 (2015).

    Article  PubMed  Google Scholar 

  234. Holz, F. G. et al. Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration. Br. J. Ophthalmol. 99, 220–226 (2015).

    Article  PubMed  Google Scholar 

  235. Jo, N. et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am. J. Pathol. 168, 2036–2053 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Boyer, D. S. Combined inhibition of platelet derived (PDGF) and vascular endothelial (VEGF) growth factors for the treatment of neovascular age-related macular degeration (NV-AMD) — results of a Phase I study. Invest. Ophthalmol. Vis. Sci. 50, 1260 (2009).

    Google Scholar 

  237. Boyer, D. S. A Phase 2b study of Fovista, a platelet derived growth factor (PDGF) inhibitor in combination with a vascular endothelial growth factor (VEGF) inhibitor for neovascular age-related macular degeneration (AMD). Invest. Ophthalmol. Vis. Sci. 54, 2175 (2013).

    Google Scholar 

  238. Jager, R. D., Mieler, W. F. & Miller, J. W. Age-related macular degeneration. N. Engl. J. Med. 358, 2606–2617 (2008).

    Article  CAS  PubMed  Google Scholar 

  239. Nishijima, K. et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am. J. Pathol. 171, 53–67 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Comparison of Age-related Macular Degeneration Treatments Trials Research Group. et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 119, 1388–1398 (2012).

  241. Miki, A. et al. Prolonged blockade of VEGF receptors does not damage retinal photoreceptors or ganglion cells. J. Cell. Physiol. 224, 262–272 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Boehm, T., Folkman, J., Browder, T. & O'Reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  243. Ho, A. C. et al. Twenty-four-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology 121, 2181–2192 (2014).

    Article  PubMed  Google Scholar 

  244. Bloch, S. B., Larsen, M., Munch, I. G. Incidence of legal blindness from age-related macular degeneration in Denmark: year 2000 to 2010. Am. J. Ophthalmol. 153, 209–213 (2012).

    Article  PubMed  Google Scholar 

  245. Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171–6180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Liu, J. F. et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised Phase 2 study. Lancet Oncol. 15, 1207–1214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Schmidt-Erfurth, U. et al. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br. J. Ophthalmol. 98, 1144–1167 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Wong, W. L. et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2, e106–e116 (2014).

    Article  PubMed  Google Scholar 

  249. Ferris, F. L. 3rd, Fine, S. L. & Hyman, L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch. Ophthalmol. 102, 1640–1642 (1984).

    Article  PubMed  Google Scholar 

  250. Friedman, D. S. et al. Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122, 564–572 (2004).

    Article  PubMed  Google Scholar 

  251. Yau, J. W. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35, 556–564 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Chen, E. et al. Burden of illness of diabetic macular edema: literature review. Curr. Med. Res. Opin. 26, 1587–1597 (2010).

    Article  CAS  PubMed  Google Scholar 

  253. Rogers, S. et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology 117, 313–319. e1 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Borooah, S. et al. Long-term visual outcomes of intravitreal ranibizumab treatment for wet age-related macular degeneration and effect on blindness rates in south-east Scotland. Eye (Lond.) 29, 1156–1161 (2015).

    Article  CAS  Google Scholar 

  255. Mitchell, P. et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 118, 615–625 (2011).

    Article  PubMed  Google Scholar 

  256. Chakravarthy, U. et al. Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology 113, 1508.e1–1508.e25 (2006).

    CAS  Google Scholar 

  257. Brown, D. M. et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the Phase 3 COPERNICUS study. Am. J. Ophthalmol. 155, 429–437. e7 (2013).

    Article  CAS  PubMed  Google Scholar 

  258. Holz, F. G. et al. VEGF Trap-Eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the Phase III GALILEO study. Br. J. Ophthalmol. 97, 278–284 (2013).

    Article  PubMed  Google Scholar 

  259. Korobelnik, J. F. et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology 121, 2247–2254 (2014).

    Article  PubMed  Google Scholar 

  260. Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P. & Persico, M. G. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Natl Acad. Sci. USA 88, 9267–9271 (1991).

    Article  CAS  PubMed  Google Scholar 

  261. Olofsson, B. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl Acad. Sci. USA 93, 2576–2581 (1996).

    Article  CAS  PubMed  Google Scholar 

  262. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Orlandini, M., Marconcini, L., Ferruzzi, R. & Oliviero, S. Identification of a c-FOS-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc. Natl Acad. Sci. USA 93, 11675–11680 (1996); erratum 94, 1603 (1997).

    Article  CAS  PubMed  Google Scholar 

  264. Shibuya, M. et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 8, 519–527 (1990).

    Google Scholar 

  265. Terman, B. I. et al. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 1677–1683 (1991).

    CAS  PubMed  Google Scholar 

  266. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  267. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    Article  CAS  PubMed  Google Scholar 

  268. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).

    Article  CAS  PubMed  Google Scholar 

  269. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  270. Cobleigh, M. A. et al. A Phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin. Oncol. 30, 117–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  271. Motzer, R. J. et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295, 2516–2524 (2006).

    Article  CAS  PubMed  Google Scholar 

  272. Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329–1338 (2006).

    Article  CAS  PubMed  Google Scholar 

  273. Escudier, B. et al. Randomized Phase II trial of first-line treatment with sorafenib versus interferon alfa-2a in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 1280–1289 (2009).

    Article  CAS  PubMed  Google Scholar 

  274. Caunt, M. et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13, 331–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  275. LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299, 890–893 (2003).

    Article  CAS  PubMed  Google Scholar 

  276. Yao, J. et al. Expression of a functional VEGFR-1 in tumor cells is a major determinant of anti-PlGF antibodies efficacy. Proc. Natl Acad. Sci. USA 108, 11590–11595 (2011).

    Article  CAS  PubMed  Google Scholar 

  277. Reck, M. et al. Overall survival with cisplatin–gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised Phase III trial (AVAiL). Ann. Oncol. 21, 1804–1809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Escudier, B. et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the Phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol. 27, 3312–3318 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank many of their colleagues and collaborators who contributed to the development of VEGF inhibitors, and they are grateful to the patients who participated in the anti-VEGF clinical trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Napoleone Ferrara.

Ethics declarations

Competing interests

Anthony P. Adamis is an employee and shareholder of Genentech/Roche.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrara, N., Adamis, A. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 15, 385–403 (2016). https://doi.org/10.1038/nrd.2015.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2015.17

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer