Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer

Key Points

  • Poly [ADP-ribose] polymerase (PARP) inhibitors are an effective maintenance therapy in patients with platinum-sensitive ovarian cancer and also in those who have received multiple lines of previous treatment

  • BRCA-mutation status provides important information for the identification of patients that are most likely to benefit from treatment with PARP inhibitors

  • BRCA-mutation testing should be offered to patients with ovarian cancer on the basis of histological subtype, and should not be limited to those with a family and/or personal history of BRCA-related malignancy

  • Additional tests to identify patients that would benefit from PARP inhibitors, including the use of homologous recombination deficiency (HRD) gene signatures and assessing genomic loss of heterozygosity seem promising

  • Data from ongoing clinical trials will help define how best to select patients with ovarian cancer for treatment with PARP inhibitors

Abstract

The treatment of patients with ovarian cancer is rapidly changing following the success of poly [ADP-ribose] polymerase (PARP) inhibitors in clinical trials. Olaparib is the first PARP inhibitor to be approved by the EMA and FDA for BRCA-mutated ovarian cancer. Germ line BRCA mutation status is now established as a predictive biomarker of potential benefit from treatment with a PARP inhibitor; therefore, knowledge of the BRCA status of an individual patient with ovarian cancer is essential, in order to guide treatment decisions. BRCA testing was previously offered only to women with a family or personal history of breast and/or ovarian cancer; however, almost 20% of women with high-grade serous ovarian cancer are now recognized to harbour a germ line BRCA mutation, and of these, >40% might not have a family history of cancer and would not have received BRCA testing. A strategy to enable more widespread implementation of BRCA testing in routine care is, therefore, necessary. In this Review, we summarize data from key clinical trials of PARP inhibitors and discuss how to integrate these agents into the current treatment landscape of ovarian cancer. The validity of germ line BRCA testing and other promising biomarkers of homologous-recombination deficiency will also be discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative anticancer mechanisms of action of PARP inhibitors.

Similar content being viewed by others

References

  1. Banerjee, S. & Kaye, S. B. New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clin. Cancer Res. 19, 961–968 (2013).

    CAS  PubMed  Google Scholar 

  2. Ledermann, J. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366, 1382–1392 (2012).

    CAS  PubMed  Google Scholar 

  3. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Fong, P. C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28, 2512–2519 (2010).

    CAS  PubMed  Google Scholar 

  5. Kristeleit, R. et al. Final results of ARIEL2 (Part 1): a phase 2 trial to prospectively identify ovarian cancer (OC) responders to rucaparib using tumor genetic analysis. European Cancer Congress Abstract 2700 (2015).

  6. Ledermann, J. et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 15, 852–861 (2014).

    CAS  PubMed  Google Scholar 

  7. The European Medicines Agency. ema.europa.eu http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/003726/human_med_001831.jsp&mid=WC0b01ac058001d124 (2014).

  8. The US department of Health and Human Services. fda.gov http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427554.htm (2014).

  9. Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    CAS  PubMed  Google Scholar 

  10. Krishnakumar, R. & Kraus, W. L. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol. Cell 39, 8–24 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. & Poirier, G. G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 10, 293–301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bai, P. & Canto, C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16, 290–295 (2012).

    CAS  PubMed  Google Scholar 

  13. Luo, X. & Kraus, W. L. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26, 417–432 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. Quenet, D., El Ramy, R., Schreiber, V. & Dantzer, F. The role of poly(ADP-ribosyl)ation in epigenetic events. Int. J. Biochem. Cell Biol. 41, 60–65 (2009).

    CAS  PubMed  Google Scholar 

  15. Scott, C. L., Swisher, E. M. & Kaufmann, S. H. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J. Clin. Oncol. 33, 1397–1406 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ashworth, A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol. 26, 3785–3790 (2008).

    CAS  PubMed  Google Scholar 

  17. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  18. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  PubMed  Google Scholar 

  19. Konstantinopoulos, P. A., Ceccaldi, R., Shapiro, G. I., D'Andrea, A. D. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 5, 1137–1154 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Banerjee, S., Kaye, S. B. & Ashworth, A. Making the best of PARP inhibitors in ovarian cancer. Nat. Rev. Clin. Oncol. 7, 508–519 (2010).

    CAS  PubMed  Google Scholar 

  21. Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Patel, A. G., Sarkaria, J. N. & Kaufmann, S. H. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl. Acad. Sci. USA. 108, 3406–3411 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Connor, M. J. Targeting the DNA damage response in cancer. Mol. Cell 60, 547–560 (2015).

    CAS  PubMed  Google Scholar 

  24. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    CAS  PubMed  Google Scholar 

  25. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    CAS  PubMed  Google Scholar 

  26. Oza, A. M. et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol. 16, 87–97 (2015).

    CAS  PubMed  Google Scholar 

  27. Coleman, R. L. et al. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation – an NRG oncology/gynecologic oncology group study. Gynecol. Oncol. 137, 386–391 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kummar, S. et al. Randomized trial of oral cyclophosphamide and veliparib in high-grade serous ovarian, primary peritoneal, or fallopian tube cancers, or BRCA-mutant ovarian cancer. Clin. Cancer Res. 21, 1574–1582 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaye, S. B. et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J. Clin. Oncol. 30, 372–379 (2012).

    CAS  PubMed  Google Scholar 

  30. Hennessy, B. T. et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J. Clin. Oncol. 28, 3570–3576 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Press, J. Z. et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 8, 17 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Baldwin, R. L. et al. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res. 60, 5329–5333 (2000).

    CAS  PubMed  Google Scholar 

  33. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  34. Ledermann, J. A. H. et al. Overall survival (OS) in patients (pts) with platinum-sensitive relapsed serous ovarian cancer (PSR SOC) receiving olaparib maintenance monotherapy: an interim analysis. J. Clin. Oncol. 34, (Suppl. Abstr. 5501) (2016).

  35. Matulonis, U. A. et al. Olaparib maintenance therapy in patients with platinum-sensitive, relapsed serous ovarian cancer and a BRCA mutation: overall survival adjusted for postprogression poly(adenosine diphosphate ribose) polymerase inhibitor therapy. Cancer 122, 1844–1852 (2016).

    CAS  PubMed  Google Scholar 

  36. Astrazeneca media centre. Astrazeneca.com [online] https://www.astrazeneca.com/media-centre/press-releases/2016/lynparza-phase-iii-solo-2-trial-shows-significant-progression-free-survival-benefit-261020161.html (2016).

  37. Domchek, S. M. et al. Efficacy and safety of olaparib monotherapy in germline BRCA1/2 mutation carriers with advanced ovarian cancer and three or more lines of prior therapy. Gynecol. Oncol. 140, 199–203 (2016).

    CAS  PubMed  Google Scholar 

  38. Kaufman, B. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250 (2015).

    CAS  PubMed  Google Scholar 

  39. Coleman, R. L. et al. Refinement of prespecified cutoff for genomic loss of heterozygosity (LOH) in ARIEL2 part 1: A phase II study of rucaparib in patients (pts) with high grade ovarian carcinoma (HGOC). J. Clin. Oncol. 34, (Suppl. Abstr. 5540) (2016).

  40. Mirza, M. R. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1611310 (2016).

  41. Rubin, S. C. et al. BRCA1, BRCA2, and hereditary nonpolyposis colorectal cancer gene mutations in an unselected ovarian cancer population: relationship to family history and implications for genetic testing. Am. J. Obstetr. Gynaecol. 178, 670–677 (1998).

    CAS  Google Scholar 

  42. Risch, H. A. et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am. J. Hum. Genet. 68, 700–710 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Soegaard, M. et al. BRCA1 and BRCA2 mutation prevalence and clinical characteristics of a population-based series of ovarian cancer cases from Denmark. Clin. Cancer Res. 14, 3761–3767 (2008).

    CAS  PubMed  Google Scholar 

  44. Satagopan, J. M. et al. Ovarian cancer risk in Ashkenazi Jewish carriers of BRCA1 and BRCA2 mutations. Clin. Cancer Res. 8, 3776–3781 (2002).

    CAS  PubMed  Google Scholar 

  45. Moslehi, R. et al. BRCA1 and BRCA2 mutation analysis of 208 Ashkenazi Jewish women with ovarian cancer. Am. J. Hum. Genet. 66, 1259–1272 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Alsop, K. et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 30, 2654–2663 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Moller, P. et al. Genetic epidemiology of BRCA mutations—family history detects less than 50% of the mutation carriers. Eur. J. Cancer 43, 1713–1717 (2007).

    PubMed  Google Scholar 

  48. George, A. S. et al. Implementation of routine BRCA testing of ovarian cancer (OC) patients at the Royal Marsden Hospital. Ann. Oncol. 25 (Suppl 4), iv307 (2014).

    Google Scholar 

  49. Pennington, K. P. et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 20, 764–775 (2014).

    CAS  PubMed  Google Scholar 

  50. Yang, D. et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306, 1557–1565 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bolton, K. L. et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 307, 382–390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, J. et al. Clinical characteristics and outcomes of BRCA-associated ovarian cancer: genotype and survival. Cancer Genet. 205, 34–41 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chetrit, A. et al. Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the National Israeli Study of Ovarian Cancer. J. Clin. Oncol. 26, 20–25 (2008).

    PubMed  Google Scholar 

  54. Candido-dos-Reis, F. J. et al. Germline mutation in BRCA1 or BRCA2 and ten-year survival for women diagnosed with epithelial ovarian cancer. Clin. Cancer Res. 21, 652–657 (2015).

    CAS  PubMed  Google Scholar 

  55. Norquist, B. M. et al. Characteristics of women with ovarian carcinoma who have BRCA1 and BRCA2 mutations not identified by clinical testing. Gynecol. Oncol. 128, 483–487 (2013).

    CAS  PubMed  Google Scholar 

  56. Norquist, B. M. et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2, 1–9 (2015).

    Google Scholar 

  57. Gourley, C. et al. Increased incidence of visceral metastases in Scottish patients with BRCA1/2- defective ovarian cancer: an extension of the ovarian BRCAness phenotype. J. Clin. Oncol. 28, 2505–2511 (2010).

    PubMed  Google Scholar 

  58. Tan, D. S. P. et al. “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J. Clin. Oncol. 26, 5530–5536 (2008).

    PubMed  Google Scholar 

  59. Adams, S. F. et al. A high response rate to liposomal doxorubicin is seen among women with BRCA mutations treated for recurrent epithelial ovarian cancer. Gynecol. Oncol. 123, 486–491 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lorusso, D., Ferrandina, G. & Pignata, S. Phase II prospective study on trabectedin (T) in BRCA-mutated and BRCAness phenotype advanced ovarian cancer (AOC) patients (pts): the MITO 15 trial. J. Clin. Oncol. 32, Abstract 5530 (2014).

    Google Scholar 

  61. Eccles, D. M. et al. Selecting patients with ovarian cancer for germline BRCA mutation testing: findings from guidelines and a systematic literature review. Adv. Ther. 33, 129–150 (2016).

    CAS  PubMed  Google Scholar 

  62. Antoniou, A. C. et al. Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring system using data from UK genetics clinics. J. Med. Genet. 45, 425–431 (2008).

    CAS  PubMed  Google Scholar 

  63. Fischer, C. et al. Evaluating the performance of the breast cancer genetic risk models BOADICEA, IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: a study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium. J. Med. Genet. 50, 360–367 (2013).

    CAS  PubMed  Google Scholar 

  64. Lee, A. J. et al. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface. Br. J. Cancer 110, 535–545 (2014).

    CAS  PubMed  Google Scholar 

  65. Evans, D. G. et al. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J. Med. Genet. 41, 474–480 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, S. et al. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. Gynecol. Oncol. 121, 353–357 (2011).

    CAS  PubMed  Google Scholar 

  67. George, A. et al. Implementing rapid, robust, cost-effective, patient-centred, routine genetic testing in ovarian cancer patients. Sci. Rep. 6, 29506 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Demsky, R. et al. Keeping it simple: genetics referrals for all invasive serous ovarian cancers. Gynecol. Oncol. 130, 329–333 (2013).

    CAS  PubMed  Google Scholar 

  69. The National Comprehensive Cancer Network, nccn.org https://www.nccn.org/professionals/physician_gls/f_guidelines.asp#ovarian (2015).

  70. Meyer, L. A. et al. Evaluating women with ovarian cancer for BRCA1 and BRCA2 mutations: missed opportunities. Obstet. Gynecol. 115, 945–952 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. Lanceley, A. et al. Family history and women with ovarian cancer: is it asked and does it matter?: an observational study. Int. J. Gynecol. Cancer 22, 254–259 (2012).

    PubMed  Google Scholar 

  72. Metcalfe, K. A. et al. Uptake of clinical genetic testing for ovarian cancer in Ontario: a population-based study. Gynecol. Oncol. 112, 68–72 (2009).

    PubMed  Google Scholar 

  73. Balmana, J. et al. BRCA in breast cancer: ESMO clinical practice guidelines. Ann. Oncol. 21 (Suppl. 5), v20–v22 (2010).

    PubMed  Google Scholar 

  74. Society of Gynecologic Oncology. SGO Clinical Practice Statement: Genetic Testing for Ovarian Cancer. [online] https://www.sgo.org/clinical-practice/guidelines/genetic-testing-for-ovarian-cancer/ (2014).

  75. Marth, C. et al. AGO Austria recommendations for genetic testing of patients with ovarian cancer. Wien. Klin. Wochenschr. 127, 652–654 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Llort, G. et al. SEOM clinical guidelines in hereditary breast and ovarian cancer. Clin. Transl. Oncol. 17, 956–961 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Foretova, L. et al. [Recommended extension of indication criteria for genetic testing of BRCA1 and BRCA2 mutations in hereditary breast and ovarian cancer syndrome]. Klin. Onkol. 29 (Suppl. 1), S9–13 (in Czech) (2016).

    PubMed  Google Scholar 

  78. National Collaborating Centre for Cancer (UK). Familial breast cancer: classification and care of people at risk of familial breast cancer and management of breast cancer and related risks in people with a family history of breast cancer. NICE Clinical Guidelines 164 (2013).

  79. George, A. UK BRCA mutation testing in patients with ovarian cancer. Br. J. Cancer 113 (Suppl. 1), S17–S21 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Percival, N. et al. The integration of BRCA testing into oncology clinics. Br. J. Nurs. 25, 690–694 (2016).

    PubMed  PubMed Central  Google Scholar 

  81. Tischkowitz, M. D. et al. The Genetic Testing in Epithelial Ovarian Cancer (GTEOC) Study: direct access to BRCA1/2 genetic testing in oncology. Presented at the 64th Annual Meeting of The American Society of Human Genetics (ASHG) [abst. 3503S]. (2014).

  82. Tischkowitz, M. Working together in the genomics era – lessons from the GTEOC study. Presented at the NCRI Cancer Conference (2015)

  83. Plaskocinska, I. et al. New paradigms for BRCA1/BRCA2 testing in women with ovarian cancer: results of the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study. J. Med. Genet. 53, 655–661 (2016).

    PubMed  Google Scholar 

  84. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02406235 (2015).

  85. Coulet, F. et al. Germline RAD51C mutations in ovarian cancer susceptibility. Clin. Genet. 83, 332–336 (2013).

    CAS  PubMed  Google Scholar 

  86. Rafnar, T. et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat. Genet. 43, 1104–1107 (2011).

    CAS  PubMed  Google Scholar 

  87. Loveday, C. et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 43, 879–884 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Loveday, C. et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat. Genet. 44, 475–476; author reply 476 (2012).

    CAS  PubMed  Google Scholar 

  89. Ramus, S. J. et al. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers. Hum. Mut. 33, 690–702 (2012).

    CAS  PubMed  Google Scholar 

  90. McNeish, I. et al. Preliminary results of ARIEL2, a phase 2 open-label study to identify ovarian cancer patients likely to respond to rucaparib. Ann. Oncol. 25 (Suppl. 4), iv305–iv326 (2014).

    Google Scholar 

  91. National Collaborating Centre for Cancer (UK). National Institute for Health and Clinical Excellence: Guidance. Familial breast cancer: classification and care of people at risk of familial breast cancer and management of breast cancer and related risks in people with a family history of breast cancer. (2013).

  92. Slade, I. et al. A cost analysis of a cancer genetic service model in the UK. J. Community Genet. 44, 185–194 (2016).

    Google Scholar 

  93. Gadzicki, D. et al. Genetic testing for familial/hereditary breast cancer-comparison of guidelines and recommendations from the UK, France, the Netherlands and Germany. J. Community Genet. 2, 53–69 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Matulonis, U. A. et al. Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: a multistudy analysis of response rates and safety. Ann. Oncol. 27, 1013–1019 (2016).

    CAS  PubMed  Google Scholar 

  95. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01844986 (2016).

  96. Sonnenblick, A. et al. An update on PARP inhibitors—moving to the adjuvant setting. Nat. Rev. Clin. Oncol. 12, 27–41 (2015).

    CAS  PubMed  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01874353 (2016).

  98. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01968213 (2016).

  99. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01847274 (2016).

  100. Wilcoxen, K. M. et al. Use of homologous recombination deficiency (HRD) score to enrich for niraparib sensitive high grade ovarian tumors. J. Clin. Oncol. 33, Abstract 5532 (2015).

  101. Rebbeck, T. R. et al. Genetic heterogeneity in hereditary breast cancer: role of BRCA1 and BRCA2. Am. J. Hum. Genet. 59, 547–553 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Peng, G. et al. Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat. Commun. 5, 3361 (2014).

    PubMed  Google Scholar 

  103. Fojo, T. & Bates, S. Mechanisms of resistance to PARP inhibitors—three and counting. Cancer Discov. 3, 20–23 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jaspers, J. E. et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 3, 68–81 (2013).

    CAS  PubMed  Google Scholar 

  105. Ceccaldi, R. et al. A unique subset of epithelial ovarian cancers with platinum sensitivity and PARP inhibitor resistance. Cancer Res. 75, 628–634 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Johnson, N. et al. Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc. Natl. Acad. Sci. USA. 110, 17041–17046 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

    CAS  PubMed  Google Scholar 

  108. Barber, L. J. et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 229, 422–429 (2013).

    CAS  PubMed  Google Scholar 

  109. Ang, J. E. et al. Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of PARP inhibitor resistance: a multi-institutional study. Clin. Cancer Res. 19, 5485–5493 (2013).

    CAS  PubMed  Google Scholar 

  110. Liu, J. F. et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol. 15, 1207–1214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Du, Y. et al. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat. Med. 22, 194–201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Johnson, N. et al. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat. Med. 17, 875–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yalon, M. et al. Overcoming resistance of cancer cells to PARP-1 inhibitors with three different drug combinations. PLoS ONE 11, e0155711 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02477644 (2016).

  115. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02282020 (2016).

  116. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02502266 (2016).

  117. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02446600 (2016).

  118. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02655016 (2016).

  119. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02470585 (2016).

  120. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02723864 (2016).

  121. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01623349 (2016).

  122. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02338622 (2016).

  123. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02734004 (2016).

  124. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02681237 (2016).

  125. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02576444 (2016).

  126. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02208375 (2016).

  127. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02484404 (2016).

  128. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02657889 (2016).

  129. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02354131 (2016).

  130. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02571725 (2016).

  131. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01434316 (2016).

Download references

Acknowledgements

We would like to thank the Royal Marsden Hospital and Institute of Cancer Research National Institute for Health Research (NIHR) Biomedical Research Centre for Cancer (BRC).

Author information

Authors and Affiliations

Authors

Contributions

A.G. and S.B. researched data for this article, all authors made a substantial contribution to discussions of content, A.G. and S.B. wrote the manuscript, and all authors reviewed and/or edited the manuscript prior to submission.

Corresponding author

Correspondence to Susana Banerjee.

Ethics declarations

Competing interests

A.G. declares that she has received honoraria from AstraZeneca. S.K. is on the advisory boards of AstraZeneca and Tesaro. S.B. is on the advisory boards of Astrazeneca and Clovis, but declares that she has received no personal financial remuneration as a result of these activities.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, A., Kaye, S. & Banerjee, S. Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer. Nat Rev Clin Oncol 14, 284–296 (2017). https://doi.org/10.1038/nrclinonc.2016.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing