Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer micrometastases

Abstract

Early spread of tumor cells is usually undetected by current imaging technologies. In patients with cancer and no signs of overt metastases sensitive methods have been developed to detect circulating tumor cells (CTCs) in the peripheral blood and disseminated tumor cells (DTCs) in the bone marrow. These technologies can be classified into cytometric and/or immunological and molecular approaches. Interestingly, the bone marrow seems to be a common homing tissue for cells derived from various epithelial tumors, and level 1a data from European and US groups have confirmed the prognostic impact of DTCs in the bone marrow of patients with breast cancer. Sequential peripheral blood analyses, however, are more convenient than bone marrow analyses for patients with solid tumors, and many research groups are currently assessing the clinical use of CTCs for assessment of prognosis and monitoring of systemic therapy. Molecular characterization of DTCs and CTCs opens a new avenue for understanding cancer dormancy, and might contribute to the identification of metastatic stem cells with important implications for future therapies. This Review focuses on the clinical relevance of the latest research results on blood-borne cancer micrometastases in patients with cancer.

Key Points

  • Cytometric/immunological and molecular approaches are the major methods to detect single DTCs/CTCs within bone marrow or blood cells

  • These technologies provide the potential to monitor systemic tumor-cell dissemination as one of the first crucial steps in the metastatic cascade

  • Various clinical studies demonstrated level 1a evidence for an association between the presence of DTCs in bone marrow and postoperative metastatic relapse, particularly in patients with breast cancer

  • Many research groups are assessing the clinical use of CTC detection in the peripheral blood for prognosis prediction and real-time monitoring of systemic therapies, with promising results

  • The assessment and monitoring of therapeutic targets on CTCs (and probably DTCs) might become an important future diagnostic tool to guide treatment decisions before the onset of overt metastases

  • The molecular characterization of DTCs/CTCs might contribute to a greater understanding of cancer dormancy and the role of metastatic stem cells, with important implications for future therapies

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of tumor cell circulation and cancer dormancy.
Figure 2: Balance of factors regulating the onset of metastasis (escape of dormancy).

Similar content being viewed by others

References

  1. Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008).

    CAS  PubMed  Google Scholar 

  2. Zach, O. & Lutz, D. Tumor cell detection in peripheral blood and bone marrow. Curr. Opin. Oncol. 18, 48–56 (2006).

    PubMed  Google Scholar 

  3. Herbert, G. S., Sohn, V. Y. & Brown, T. A. The impact of nodal isolated tumor cells on survival of breast cancer patients. Am. J. Surg. 193, 571–573 (2007).

    PubMed  Google Scholar 

  4. Imoto, S., Ochiai, A., Okumura, C., Wada, N. & Hasebe, T. Impact of isolated tumor cells in sentinel lymph nodes detected by immunohistochemical staining. Eur. J. Surg. Oncol. 32, 1175–1179 (2006).

    CAS  PubMed  Google Scholar 

  5. Kahn, H. J. et al. Biological significance of occult micrometastases in histologically negative axillary lymph nodes in breast cancer patients using the recent American Joint Committee on Cancer breast cancer staging system. Breast J. 12, 294–301 (2006).

    PubMed  Google Scholar 

  6. Izbicki, J. R. et al. Prognostic value of immunohistochemically identifiable tumor cells in lymph nodes of patients with completely resected esophageal cancer. N. Engl. J. Med. 337, 1188–1194 (1997).

    CAS  PubMed  Google Scholar 

  7. Kubuschok, B., Passlick, B., Izbicki, J. R., Thetter, O. & Pantel, K. Disseminated tumor cells in lymph nodes as a determinant for survival in surgically resected non-small-cell lung cancer. J. Clin. Oncol. 17, 19–24 (1999).

    CAS  PubMed  Google Scholar 

  8. Bogoevski, D. et al. Mode of spread in the early phase of lymphatic metastasis in pancreatic ductal adenocarcinoma: prognostic significance of nodal microinvolvement. Ann. Surg. 240, 993–1000 (2004).

    PubMed  PubMed Central  Google Scholar 

  9. Weaver, D. L. et al. Detection of occult sentinel lymph node micrometastases by immunohistochemistry in breast cancer. An NSABP protocol B-32 quality assurance study. Cancer 107, 661–667 (2006).

    PubMed  Google Scholar 

  10. Wada, N. & Imoto, S. Clinical evidence of breast cancer micrometastasis in the era of sentinel node biopsy. Int. J. Clin. Oncol. 13, 24–32 (2008).

    PubMed  Google Scholar 

  11. Pinzani, P. et al. Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer: correlation with real-time reverse transcriptase-polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Hum. Pathol. 37, 711–718 (2006).

    CAS  PubMed  Google Scholar 

  12. Wong, N. S. et al. Prognostic significance of circulating tumour cells enumerated after filtration enrichment in early and metastatic breast cancer patients. Breast Cancer Res. Treat. 99, 63–69 (2006).

    PubMed  Google Scholar 

  13. Zheng, S. et al. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J. Chromatogr. A 1162, 154–161 (2007).

    CAS  PubMed  Google Scholar 

  14. Woelfle, U. et al. Bi-specific immunomagnetic enrichment of micrometastatic tumour cell clusters from bone marrow of cancer patients. J. Immunol. Methods 300, 136–145 (2005).

    CAS  PubMed  Google Scholar 

  15. Fehm, T. et al. A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107, 885–892 (2006).

    PubMed  Google Scholar 

  16. Borgen, E. et al. A European interlaboratory testing of three well-known procedures for immunocytochemical detection of epithelial cells in bone marrow. Results from analysis of normal bone marrow. Cytometry B. Clin. Cytom. 70, 400–409 (2006).

    CAS  PubMed  Google Scholar 

  17. Hayes, D. F. et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12, 4218–4224 (2006).

    CAS  PubMed  Google Scholar 

  18. Riethdorf, S. et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch System. Clin. Cancer Res. 13, 920–928 (2007).

    CAS  PubMed  Google Scholar 

  19. Shaffer, D. R. et al. Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin. Cancer Res. 13, 2023–2029 (2007).

    CAS  PubMed  Google Scholar 

  20. Sastre, J. et al. Circulating tumor cells in colorectal cancer: correlation with clinical and pathological variables. Ann. Oncol. 19, 935–938 (2008).

    CAS  PubMed  Google Scholar 

  21. Alix-Panabieres, C. et al. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin. Chem. 53, 537–539 (2007).

    CAS  PubMed  Google Scholar 

  22. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pachmann, K. et al. Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J. Clin. Oncol. 26, 1208–1215 (2008).

    PubMed  Google Scholar 

  24. Krivacic, R. T. et al. A rare-cell detector for cancer. Proc. Natl Acad. Sci. USA 101, 10501–10504 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsieh, H. B. et al. High speed detection of circulating tumor cells. Biosens. Bioelectron. 21, 1893–1899 (2006).

    CAS  PubMed  Google Scholar 

  26. Ntouroupi, T. G. et al. Detection of circulating tumour cells in peripheral blood with an automated scanning fluorescence microscope. Br. J. Cancer 99, 789–795 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng, G. et al. Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res. 10, R69 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Alix-Panabières, C. et al. Detection of circulating prostate-specific antigen-secreting cells in prostate cancer patients. Clin. Chem. 51, 1538–1541 (2005).

    PubMed  Google Scholar 

  30. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hermanek, P., Hutter, R. V., Sobin, L. H. & Wittekind, C. International Union Against Cancer. Classification of isolated tumor cells and micrometastasis. Cancer 86, 2668–2673 (1999).

    CAS  PubMed  Google Scholar 

  32. Singletary, S. E., Greene, F. L. & Sobin, L. H. Classification of isolated tumor cells: clarification of the 6th edition of the American Joint Committee on Cancer Staging Manual. Cancer 98, 2740–2741 (2003).

    PubMed  Google Scholar 

  33. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    CAS  PubMed  Google Scholar 

  34. Bidard, F. C. et al. Disseminated tumor cells of breast cancer patients: a strong prognostic factor for distant and local relapse. Clin. Cancer Res. 14, 3306–3311 (2008).

    CAS  PubMed  Google Scholar 

  35. Muller, V. et al. Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin. Cancer Res. 11, 3678–3685 (2005).

    PubMed  Google Scholar 

  36. Wiedswang, G. et al. Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int. J. Cancer 118, 2013–2019 (2006).

    CAS  PubMed  Google Scholar 

  37. Benoy, I. H. et al. Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br. J. Cancer 94, 672–680 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bidard, F. C. et al. Prognosis of women with stage IV breast cancer depends on detection of circulating tumor cells rather than disseminated tumor cells. Ann. Oncol. 19, 496–500 (2008).

    PubMed  Google Scholar 

  39. Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    PubMed  Google Scholar 

  40. Mehes, G., Witt, A., Kubista, E. & Ambros, P. F. Circulating breast cancer cells are frequently apoptotic. Am. J. Pathol. 159, 17–20 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stathopoulou, A. et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J. Clin. Oncol. 20, 3404–3412 (2002).

    CAS  PubMed  Google Scholar 

  42. Pierga, J. Y. et al. Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin. Cancer Res. 10, 1392–1400 (2004).

    CAS  PubMed  Google Scholar 

  43. Wikman, H., Vessella, R. & Pantel, K. Cancer micrometastasis and tumor dormancy. APMIS 116, 754–770 (2008).

    CAS  PubMed  Google Scholar 

  44. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    CAS  PubMed  Google Scholar 

  45. Budd, G. T. et al. Circulating tumor cells versus imaging--predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 12, 6403–6409 (2006).

    CAS  PubMed  Google Scholar 

  46. Harris, L. et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 25, 5287–5312 (2007).

    CAS  PubMed  Google Scholar 

  47. [No authors listed.] Treatment decision making based on blood levels of tumor cells in women with metastatic breast cancer receiving chemotherapy. SWOG-S0500. National Cancer Institute [online], (2006).

  48. Pierga, J. Y. et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin. Cancer Res. 14, 7004–7010 (2008).

    CAS  PubMed  Google Scholar 

  49. Mueller, V. et al. Prospective monitoring of circulating tumor cells in breast cancer patients treated with primary systemic therapy—a translational project of the German breast Group study GeparQuattro [Abstract]. ASCO Meeting Abstracts 25, 21085 (2007).

    Google Scholar 

  50. Rack, B. K. et al. Prognostic relevance of circulating tumor cells (CTCs) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy: The German SUCCESS-Trial [Abstract]. ASCO Meeting Abstracts 26, 503 (2008).

    Google Scholar 

  51. Pantel, K. et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. Natl Cancer Inst. 85, 1419–1424 (1993).

    CAS  PubMed  Google Scholar 

  52. Gralow, J. et al. Clinical cancer advances 2007: major research advances in cancer treatment, prevention, and screening—a report from the American Society of Clinical Oncology. J. Clin. Oncol. 26, 313–325 (2008).

    PubMed  Google Scholar 

  53. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    CAS  PubMed  Google Scholar 

  54. Braun, S. et al. ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I–III breast cancer patients. Cancer Res. 61, 1890–1895 (2001).

    CAS  PubMed  Google Scholar 

  55. Wülfing, P. et al. HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin. Cancer Res. 12, 1715–1720 (2006).

    PubMed  Google Scholar 

  56. Solomayer, E. F. et al. Comparison of HER2 status between primary tumor and disseminated tumor cells in primary breast cancer patients. Breast Cancer Res. Treat. 98, 179–184 (2006).

    CAS  PubMed  Google Scholar 

  57. Fehm, T. et al. Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res. 9, R74 (2007).

    PubMed  PubMed Central  Google Scholar 

  58. Simon, R. et al. Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J. Natl Cancer Inst. 93, 1141–1146 (2001).

    CAS  PubMed  Google Scholar 

  59. Gong, Y., Booser, D. J. & Sneige, N. Comparison of HER-2 status determined by fluorescence in situ hybridization in primary and metastatic breast carcinoma. Cancer 103, 1763–1769 (2005).

    CAS  PubMed  Google Scholar 

  60. Palmieri, D. et al. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67, 4190–4198 (2007).

    CAS  PubMed  Google Scholar 

  61. Lower, E. E., Glass, E., Blau, R. & Harman, S. HER-2/neu expression in primary and metastatic breast cancer. Breast Cancer Res. Treat. 113, 301–306 (2008).

    PubMed  Google Scholar 

  62. Santinelli, A., Pisa, E., Stramazzotti, D. & Fabris, G. HER-2 status discrepancy between primary breast cancer and metastatic sites. Impact on target therapy. Int. J. Cancer 122, 999–1004 (2008).

    CAS  PubMed  Google Scholar 

  63. Tapia, C. et al. HER2 gene status in primary breast cancers and matched distant metastases. Breast Cancer Res. 9, R31 (2007).

    PubMed  PubMed Central  Google Scholar 

  64. Press, M. F. et al. Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials. Clin. Cancer Res. 11, 6598–6607 (2005).

    CAS  PubMed  Google Scholar 

  65. Stoecklein, N. H. et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13, 441–453 (2008).

    CAS  PubMed  Google Scholar 

  66. Meng, S. et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc. Natl Acad. Sci. USA 101, 9393–9398 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Meng, S. et al. uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. Proc. Natl Acad. Sci. USA 103, 17361–17365 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Janni, W. et al. The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence. Cancer 103, 884–891 (2005).

    PubMed  Google Scholar 

  69. Hanrahan, E. O. et al. Overall survival and cause-specific mortality of patients with stage T1a,bN0M0 breast carcinoma. J. Clin. Oncol. 25, 4952–4960 (2007).

    PubMed  Google Scholar 

  70. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    CAS  PubMed  Google Scholar 

  71. Mahnke, Y. D., Schwendemann, J., Beckhove, P. & Schirrmacher, V. Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115, 325–336 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    CAS  PubMed  Google Scholar 

  73. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  74. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).

    CAS  PubMed  Google Scholar 

  76. Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008).

    CAS  PubMed  Google Scholar 

  77. Kallergi, G. et al. Vascular endothelial growth factor (VEGF) expression in CTCs of breast cancer patients [Abstract]. AACR Meeting Abstracts 276 (2008).

    Google Scholar 

  78. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004).

    PubMed  PubMed Central  Google Scholar 

  80. Clarke, M. F. & Fuller, M. Stem cells and cancer: two faces of eve. Cell 124, 1111–1115 (2006).

    CAS  PubMed  Google Scholar 

  81. Trumpp, A. & Wiestler, O. D. Mechanisms of Disease: cancer stem cells-—targeting the evil twin. Nat. Clin. Pract. Oncol. 5, 337–347 (2008).

    CAS  PubMed  Google Scholar 

  82. Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226 (2007).

    CAS  PubMed  Google Scholar 

  83. Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Becker, S., Becker-Pergola, G., Wallwiener, D., Solomayer, E. F. & Fehm, T. Detection of cytokeratin-positive cells in the bone marrow of breast cancer patients undergoing adjuvant therapy. Breast Cancer Res. Treat. 97, 91–96 (2006).

    CAS  PubMed  Google Scholar 

  85. Becker, S., Solomayer, E., Becker-Pergola, G., Wallwiener, D. & Fehm, T. Primary systemic therapy does not eradicate disseminated tumor cells in breast cancer patients. Breast Cancer Res. Treat. 106, 239–243 (2007).

    PubMed  Google Scholar 

  86. Wiedswang, G. et al. Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J. Clin. Oncol. 21, 3469–3478 (2003).

    CAS  PubMed  Google Scholar 

  87. Braun, S., Hepp, F., Sommer, H. L. & Pantel, K. Tumor-antigen heterogeneity of disseminated breast cancer cells: implications for immunotherapy of minimal residual disease. Int. J. Cancer 84, 1–5 (1999).

    CAS  PubMed  Google Scholar 

  88. Balic, M. et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res. 12, 5615–5621 (2006).

    CAS  PubMed  Google Scholar 

  89. Theodoropoulos, P. A. et al. Detection of circulating tumor cells with breast cancer stem cell-like phenotype in blood samples of patients with breast cancer [Abstract]. AACR Meeting Abstracts 2008 (2008).

    Google Scholar 

  90. Solakoglu, O. et al. Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc. Natl Acad. Sci. USA 99, 2246–2251 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4, 448–456 (2004).

    CAS  PubMed  Google Scholar 

  92. Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6, 93–106 (2006).

    CAS  PubMed  Google Scholar 

  93. Thurm, H. et al. Rare expression of epithelial cell adhesion molecule on residual micrometastatic breast cancer cells after adjuvant chemotherapy. Clin. Cancer Res. 9, 2598–2604 (2003).

    CAS  PubMed  Google Scholar 

  94. Hemsen, A. et al. Comparative evaluation of urokinase-type plasminogen activator receptor expression in primary breast carcinomas and on metastatic tumor cells. Int. J. Cancer 107, 903–909 (2003).

    CAS  PubMed  Google Scholar 

  95. Reimers, N. et al. Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin. Cancer Res. 10, 3422–3428 (2004).

    CAS  PubMed  Google Scholar 

  96. Pantel, K. et al. Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res. 51, 4712–4715 (1991).

    CAS  PubMed  Google Scholar 

  97. Kang, Y. & Massague, J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279 (2004).

    CAS  PubMed  Google Scholar 

  98. Watson, M. A. et al. Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin. Cancer Res. 13, 5001–5009 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Klein, C. A. Random mutations, selected mutations: A PIN opens the door to new genetic landscapes. Proc. Natl Acad. Sci. USA 103, 18033–18034 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fehm, T. et al. Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin. Cancer Res. 8, 2073–2084 (2002).

    CAS  PubMed  Google Scholar 

  101. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Korah, R., Choi, L., Barrios, J. & Wieder, R. Expression of FGF-2 alters focal adhesion dynamics in migration-restricted MDA-MB-231 breast cancer cells. Breast Cancer Res. Treat. 88, 17–28 (2004).

    CAS  PubMed  Google Scholar 

  103. Joensuu, K., Heikkilä, P. & Andersson, L. C. Tumor dormancy: Elevated expression of stanniocalcins in late relapsing breast cancer. Cancer Lett. 265, 76–83 (2008).

    CAS  PubMed  Google Scholar 

  104. Heiss, M. M. et al. Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: a reference to early systemic disease in solid cancer. Nat. Med. 1, 1035–1039 (1995).

    CAS  PubMed  Google Scholar 

  105. Apostolaki, S. et al. Circulating HER2 mRNA-positive cells in the peripheral blood of patients with stage I and II breast cancer after the administration of adjuvant chemotherapy: evaluation of their clinical relevance. Ann. Oncol. 18, 851–858 (2007).

    CAS  PubMed  Google Scholar 

  106. Davis, J. W. et al. Circulating tumor cells in peripheral blood samples from patients with increased serum prostate specific antigen: initial results in early prostate cancer. J. Urol. 179, 2187–2191 (2008).

    PubMed  Google Scholar 

  107. Alix-Panabières, C. et al. Characterization and enumeration of cells secreting tumor markers in the peripheral blood of breast cancer patients. J. Immunol. Methods 299, 177–188 (2005).

    PubMed  Google Scholar 

  108. Rolle, A. et al. Increase in number of circulating disseminated epithelial cells after surgery for non-small cell lung cancer monitored by MAINTRAC(R) is a predictor for relapse: A preliminary report. World J. Surg. Oncol. 3, 18 (2005).

    PubMed  PubMed Central  Google Scholar 

  109. Gaforio, J. J. et al. Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts for poor prognosis. Int. J. Cancer 107, 984–990 (2003).

    CAS  PubMed  Google Scholar 

  110. Jotsuka, T. et al. Persistent evidence of circulating tumor cells detected by means of RT-PCR for CEA mRNA predicts early relapse: a prospective study in node-negative breast cancer. Surgery 135, 419–426 (2004).

    PubMed  Google Scholar 

  111. Giatromanolaki, A. et al. Assessment of highly angiogenic and disseminated in the peripheral blood disease in breast cancer patients predicts for resistance to adjuvant chemotherapy and early relapse. Int. J. Cancer 108, 620–627 (2004).

    CAS  PubMed  Google Scholar 

  112. Ferrucci, P. F. et al. Mammaglobin expression in leukapheresis products is a predictive marker of poor prognosis in women with high-risk breast cancer. Clin. Cancer Res. 10, 6039–6046 (2004).

    CAS  PubMed  Google Scholar 

  113. Quintela-Fandino, M. et al. Breast cancer-specific mRNA transcripts presence in peripheral blood after adjuvant chemotherapy predicts poor survival among high-risk breast cancer patients treated with high-dose chemotherapy with peripheral blood stem cell support. J. Clin. Oncol. 24, 3611–3618 (2006).

    CAS  PubMed  Google Scholar 

  114. Xenidis, N. et al. Clinical relevance of circulating CK-19 mRNA-positive cells detected during the adjuvant tamoxifen treatment in patients with early breast cancer. Ann. Oncol. 18, 1623–1631 (2007).

    CAS  PubMed  Google Scholar 

  115. Ignatiadis, M. et al. Molecular detection and prognostic value of circulating cytokeratin-19 messenger RNA-positive and HER2 messenger RNA-positive cells in the peripheral blood of women with early-stage breast cancer. Clin. Breast Cancer 7, 883–889 (2007).

    PubMed  Google Scholar 

  116. Ignatiadis, M. et al. Different prognostic value of cytokeratin-19 mRNA-positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J. Clin. Oncol. 25, 5194–5202 (2007).

    PubMed  Google Scholar 

  117. Nakagawa, T. et al. Detection of circulating tumor cells in early-stage breast cancer metastasis to axillary lymph nodes. Clin. Cancer Res. 13, 4105–4110 (2007).

    CAS  PubMed  Google Scholar 

  118. Ignatiadis, M. et al. Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin. Cancer Res. 14, 2593–2600 (2008).

    CAS  PubMed  Google Scholar 

  119. Cohen, S. J. et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 3213–3221 (2008).

    PubMed  Google Scholar 

  120. Uen, Y. H. et al. Prognostic significance of multiple molecular markers for patients with stage II colorectal cancer undergoing curative resection. Ann. Surg. 246, 1040–1046 (2007).

    PubMed  Google Scholar 

  121. Sadahiro, S. et al. Detection of carcinoembryonic antigen messenger RNA-expressing cells in peripheral blood 7 days after curative surgery is a novel prognostic factor in colorectal cancer. Ann. Surg. Oncol. 14, 1092–1098 (2007).

    PubMed  Google Scholar 

  122. Allen-Mersh, T. G. et al. Role of circulating tumour cells in predicting recurrence after excision of primary colorectal carcinoma. Br. J. Surg. 94, 96–105 (2007).

    CAS  PubMed  Google Scholar 

  123. Iinuma, H. et al. Usefulness and clinical significance of quantitative real-time RT-PCR to detect isolated tumor cells in the peripheral blood and tumor drainage blood of patients with colorectal cancer. Int. J. Oncol. 28, 297–306 (2006).

    CAS  PubMed  Google Scholar 

  124. Sadahiro, S. et al. Detection of carcinoembryonic antigen messenger RNA-expressing cells in portal and peripheral blood during surgery does not influence relapse in colorectal cancer. Ann. Surg. Oncol. 12, 988–994 (2005).

    PubMed  Google Scholar 

  125. Kienle, P. et al. Decreased detection rate of disseminated tumor cells of rectal cancer patients after preoperative chemoradiation: a first step towards a molecular surrogate marker for neoadjuvant treatment in colorectal cancer. Ann. Surg. 238, 324–330 (2003).

    PubMed  PubMed Central  Google Scholar 

  126. Sadahiro, S. et al. Detection of tumor cells in the portal and peripheral blood of patients with colorectal carcinoma using competitive reverse transcriptase-polymerase chain reaction. Cancer 92, 1251–1258 (2001).

    CAS  PubMed  Google Scholar 

  127. Sienel, W., Seen-Hibler, R., Mutschler, W., Pantel, K. & Passlick, B. Tumour cells in the tumour draining vein of patients with non-small cell lung cancer: detection rate and clinical significance. Eur. J. Cardiothorac. Surg. 23, 451–456 (2003).

    PubMed  Google Scholar 

  128. Yamashita, J. et al. Preoperative evidence of circulating tumor cells by means of reverse transcriptase-polymerase chain reaction for carcinoembryonic antigen messenger RNA is an independent predictor of survival in non-small cell lung cancer: a prospective study. J. Thorac. Cardiovasc. Surg. 124, 299–305 (2002).

    CAS  PubMed  Google Scholar 

  129. Sher, Y. P. et al. Prognosis of non-small cell lung cancer patients by detecting circulating cancer cells in the peripheral blood with multiple marker genes. Clin. Cancer Res. 11, 173–179 (2005).

    CAS  PubMed  Google Scholar 

  130. Yamamoto, O. et al. Surfactant protein gene expressions for detection of lung carcinoma cells in peripheral blood. Respir. Med. 99, 1164–1174 (2005).

    PubMed  Google Scholar 

  131. Sheu, C. C. et al. Development of a membrane array-based multimarker assay for detection of circulating cancer cells in patients with non-small cell lung cancer. Int. J. Cancer 119, 1419–1426 (2006).

    CAS  PubMed  Google Scholar 

  132. Sheu, C. C. et al. Combined detection of CEA, CK-19 and c-met mRNAs in peripheral blood: a highly sensitive panel for potential molecular diagnosis of non-small cell lung cancer. Oncology 70, 203–211 (2006).

    CAS  PubMed  Google Scholar 

  133. Chen, T. F. et al. CK19 mRNA expression measured by reverse-transcription polymerase chain reaction (RT-PCR) in the peripheral blood of patients with non-small cell lung cancer treated by chemo-radiation: an independent prognostic factor. Lung Cancer 56, 105–114 (2007).

    PubMed  Google Scholar 

  134. Liu, L. et al. Detection of circulating cancer cells in lung cancer patients with a panel of marker genes. Biochem. Biophys. Res. Commun. 372, 756–760 (2008).

    CAS  PubMed  Google Scholar 

  135. Olmos, D. et al. Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann. Oncol. 20, 27–33 (2008).

    PubMed  Google Scholar 

  136. Okegawa, T., Nutahara, K. & Higashihara, E. Immunomagnetic quantification of circulating tumor cells as a prognostic factor of androgen deprivation responsiveness in patients with hormone naive metastatic prostate cancer. J. Urol. 180, 1342–1347 (2008).

    PubMed  Google Scholar 

  137. Danila, D. C. et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin. Cancer Res. 13, 7053–7058 (2007).

    CAS  PubMed  Google Scholar 

  138. Moreno, J. G. et al. Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology 65, 713–718 (2005).

    PubMed  Google Scholar 

  139. Ross, R. W. et al. Prognostic significance of baseline reverse transcriptase-PCR for prostate-specific antigen in men with hormone-refractory prostate cancer treated with chemotherapy. Clin. Cancer Res. 11, 5195–5198 (2005).

    CAS  PubMed  Google Scholar 

  140. Gewanter, R. M. et al. RT-PCR for PSA as a prognostic factor for patients with clinically localized prostate cancer treated with radiotherapy. Urology 61, 967–971 (2003).

    PubMed  Google Scholar 

  141. Tombal, B., Van Cangh, P. J., Loric, S. & Gala, J. L. Prognostic value of circulating prostate cells in patients with a rising PSA after radical prostatectomy. Prostate 56, 163–170 (2003).

    PubMed  Google Scholar 

  142. Mejean, A. et al. Detection of circulating prostate derived cells in patients with prostate adenocarcinoma is an independent risk factor for tumor recurrence. J. Urol. 163, 2022–2029 (2000).

    CAS  PubMed  Google Scholar 

  143. Grasso, Y. Z., Gupta, M. K., Levin, H. S., Zippe, C. D. & Klein, E. A. Combined nested RT-PCR assay for prostate-specific antigen and prostate-specific membrane antigen in prostate cancer patients: correlation with pathological stage. Cancer Res. 58, 1456–1459 (1998).

    CAS  PubMed  Google Scholar 

  144. Ghossein, R. A. et al. Prognostic significance of detection of prostate-specific antigen transcripts in the peripheral blood of patients with metastatic androgen-independent prostatic carcinoma. Urology 50, 100–105 (1997).

    CAS  PubMed  Google Scholar 

  145. Olsson, C. A. et al. Preoperative reverse transcriptase polymerase chain reaction for prostate specific antigen predicts treatment failure following radical prostatectomy. J. Urol. 155, 1557–1562 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (PA 341/15-2), Deutsche Krebshilfe (10-2181-Pa) Bonn, Germany; and the European Commission (DISMAL-project, contract no. LSHC-CT-2005-018911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Pantel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantel, K., Alix-Panabières, C. & Riethdorf, S. Cancer micrometastases. Nat Rev Clin Oncol 6, 339–351 (2009). https://doi.org/10.1038/nrclinonc.2009.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.44

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing