Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Next-generation pacemakers: from small devices to biological pacemakers

Key Points

  • The heartbeat originates from spontaneous depolarizations in the sinoatrial node, which lead to the spread of electrical signals throughout the heart via a specialized conduction system

  • Failure of the sinoatrial node pacemaker or disease of the conduction system results in slow heart rates that can cause fainting or sudden death

  • Current therapies rely on electronic pacemakers to provide an adequate heart rate to satisfy haemodynamic needs

  • Electronic pacemaker technologies continue to evolve; however, electronic pacemakers have limitations including battery life, system failure, inability to provide true autonomic response, and device-related infections

  • Biological pacemakers, currently at the preclinical stage, might be an alternative to electronic devices for selected patients in the future

Abstract

Electrogenesis in the heart begins in the sinoatrial node and proceeds down the conduction system to originate the heartbeat. Conduction system disorders lead to slow heart rates that are insufficient to support the circulation, necessitating implantation of electronic pacemakers. The typical electronic pacemaker consists of a subcutaneous generator and battery module attached to one or more endocardial leads. New leadless pacemakers can be implanted directly into the right ventricular apex, providing single-chamber pacing without a subcutaneous generator. Modern pacemakers are generally reliable, and their programmability provides options for different pacing modes tailored to specific clinical needs. Advances in device technology will probably include alternative energy sources and dual-chamber leadless pacing in the not-too-distant future. Although effective, current electronic devices have limitations related to lead or generator malfunction, lack of autonomic responsiveness, undesirable interactions with strong magnetic fields, and device-related infections. Biological pacemakers, generated by somatic gene transfer, cell fusion, or cell transplantation, provide an alternative to electronic devices. Somatic reprogramming strategies, which involve transfer of genes encoding transcription factors to transform working myocardium into a surrogate sinoatrial node, are furthest along in the translational pipeline. Even as electronic pacemakers become smaller and less invasive, biological pacemakers might expand the therapeutic armamentarium for conduction system disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac conduction system.
Figure 2: Mechanisms of sinoatrial node automaticity.
Figure 3: Timeline of the evolution of electronic pacemakers.
Figure 4: Biological pacemaker approaches.
Figure 5: Somatic reprogramming by TBX18.

Similar content being viewed by others

References

  1. Miranda, J. O., Ramalho, C., Henriques-Coelho, T. & Areias, J. C. Fetal programming as a predictor of adult health or disease: the need to reevaluate fetal heart function. Heart Fail. Rev. 22, 861–877 (2017).

    PubMed  Google Scholar 

  2. Friedman, D., Duncanson, L., Glickstein, J. & Buyon, J. A review of congenital heart block. Images Paediatr. Cardiol. 5, 36–48 (2003).

    PubMed  PubMed Central  Google Scholar 

  3. Marban, E. Cardiac channelopathies. Nature 415, 213–218 (2002).

    CAS  PubMed  Google Scholar 

  4. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    CAS  PubMed  Google Scholar 

  5. Crick, S. J. et al. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation 89, 1697–1708 (1994).

    CAS  PubMed  Google Scholar 

  6. Anderson, R. H., Yanni, J., Boyett, M. R., Chandler, N. J. & Dobrzynski, H. The anatomy of the cardiac conduction system. Clin. Anat. 22, 99–113 (2009).

    PubMed  Google Scholar 

  7. Anderson, R. H. & Ho, S. Y. The architecture of the sinus node, the atrioventricular conduction axis, and the internodal atrial myocardium. J. Cardiovasc. Electrophysiol. 9, 1233–1248 (1998).

    CAS  PubMed  Google Scholar 

  8. Epstein, J. A. Franklin, H. Epstein Lecture. Cardiac development and implications for heart disease. N. Engl. J. Med. 363, 1638–1647 (2010).

    CAS  PubMed  Google Scholar 

  9. van Weerd, J. H. & Christoffels, V. M. The formation and function of the cardiac conduction system. Development 143, 197–210 (2016).

    CAS  PubMed  Google Scholar 

  10. Ionta, V. et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Rep. 4, 129–142 (2015).

    CAS  Google Scholar 

  11. Kapoor, N., Liang, W., Marban, E. & Cho, H. C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2013).

    CAS  PubMed  Google Scholar 

  12. Liang, W., Cho, H. C. & Marban, E. Wnt signalling suppresses voltage-dependent Na+ channel expression in postnatal rat cardiomyocytes. J. Physiol. 593, 1147–1157 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Christoffels, V. M. & Moorman, A. F. Development of the cardiac conduction system: why are some regions of the heart more arrhythmogenic than others? Circul. Arrhythmia Electrophysiol. 2, 195–207 (2009).

    Google Scholar 

  14. Eisner, D. A. & Cerbai, E. Beating to time: calcium clocks, voltage clocks, and cardiac pacemaker activity. Am. J. Physiol. Heart Circ. Physiol. 296, H561–H562 (2009).

    CAS  PubMed  Google Scholar 

  15. DiFrancesco, D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324, 470–473 (1986).

    CAS  PubMed  Google Scholar 

  16. Mangoni, M. E. et al. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc. Natl Acad. Sci. USA 100, 5543–5548 (2003).

    CAS  PubMed  Google Scholar 

  17. Huser, J. et al. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. J. Physiol. 524, 795–806 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bogdanov, K. Y., Vinogradova, T. M. & Lakatta, E. G. Sinoatrial nodal cell ryanodine receptor and Na+-Ca2+ exchanger: molecular partners in pacemaker regulation. Circul. Res. 88, 1254–1258 (2001).

    CAS  Google Scholar 

  19. Groenke, S. et al. Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity. PloS ONE 8, e81633 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Torrente, A. G. et al. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Proc. Natl Acad. Sci. USA 112, 9769–9774 (2015).

    CAS  PubMed  Google Scholar 

  21. DiFrancesco, D. & Borer, J. S. The funny current: cellular basis for the control of heart rate. Drugs 67 (Suppl. 2), 15–24 (2007).

    PubMed  Google Scholar 

  22. Walsh, K. B. & Kass, R. S. Regulation of a heart potassium channel by protein kinase A and C. Science 242, 67–69 (1988).

    CAS  PubMed  Google Scholar 

  23. Monfredi, O., Maltsev, V. A. & Lakatta, E. G. Modern concepts concerning the origin of the heartbeat. Physiology 28, 74–92 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vinogradova, T. M. et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circul. Res. 98, 505–514 (2006).

    CAS  Google Scholar 

  25. Bleiziffer, S. et al. Predictors for new-onset complete heart block after transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 3, 524–530 (2010).

    PubMed  Google Scholar 

  26. Izmirly, P. M. et al. Clinical and pathologic implications of extending the spectrum of maternal autoantibodies reactive with ribonucleoproteins associated with cutaneous and now cardiac neonatal lupus from SSA/Ro and SSB/La to U1RNP. Autoimmun. Rev. 16, 980–983 (2017).

    CAS  PubMed  Google Scholar 

  27. Ramos, S., Matturri, L., Rossi, L. & Rossi, M. Scleroatrophy of the atrioventricular junctional specialized tissue (Lenegre-Lev Disease) in chronic chagas' heart disease. Acta Cardiol. 50, 483–487 (1995).

    CAS  PubMed  Google Scholar 

  28. Epstein, A. E. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 61, e6–e75 (2013).

    PubMed  Google Scholar 

  29. Greenspon, A. J. et al. Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures. J. Am. Coll. Cardiol. 60, 1540–1545 (2012).

    PubMed  Google Scholar 

  30. Aquilina, O. A brief history of cardiac pacing. Images Paediatr. Cardiol. 8, 17–81 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. van Hemel, N. M. & van der Wall, E. E. 8 October 1958, D Day for the implantable pacemaker. Neth. Heart J. 16 (Suppl. 1), S3–S4 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Larsson, B., Elmqvist, H., Rydén, L. & Schüller, H. Lessons from the first patient with an implanted pacemaker: 1958–2001. Pacing Clin. Electrophysiol. 26, 114–124 (2003).

    PubMed  Google Scholar 

  33. Chardack, W. M., Gage, A. A. & Greatbatch, W. A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block. Surgery 48, 643–654 (1960).

    CAS  PubMed  Google Scholar 

  34. Parsonnet, V., Driller, J., Cook, D. & Rizvi, S. A. Thirty-one years of clinical experience with “nuclear-powered” pacemakers. Pacing Clin. Electrophysiol. 29, 195–200 (2006).

    PubMed  Google Scholar 

  35. Smyth, N. P., Keshishian, J. D., Garcia, J. M., Kelly, L. C. & Proctor, D. Clinical experience with the isotopic cardiac pacemaker. Ann. Thorac. Surg. 28, 14–21 (1979).

    CAS  PubMed  Google Scholar 

  36. Burr, L. H. The lithium iodide-powered cardiac pacemaker. Clinical experience with 250 implantations. J. Thorac. Cardiovasc. Surg. 73, 421–423 (1977).

    CAS  PubMed  Google Scholar 

  37. Mond, H. G. & Freitag, G. The cardiac implantable electronic device power source: evolution and revolution. Pacing Clin. Electrophysiol. 37, 1728–1745 (2014).

    PubMed  Google Scholar 

  38. Boriani, G. et al. Role of ventricular Autocapture function in increasing longevity of DDDR pacemakers: a prospective study. Europace 8, 216–220 (2006).

    PubMed  Google Scholar 

  39. Biffi, M. et al. Actual pacemaker longevity: the benefit of stimulation by automatic capture verification. Pacing Clin. Electrophysiol. 33, 873–881 (2010).

    PubMed  Google Scholar 

  40. Milasinovic, G. et al. Percent ventricular pacing with managed ventricular pacing mode in standard pacemaker population. Europace 10, 151–155 (2008).

    PubMed  Google Scholar 

  41. Gillis, A. M. et al. Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block. Pacing Clin. Electrophysiol. 29, 697–705 (2006).

    PubMed  Google Scholar 

  42. Saito, M. et al. Effect of right ventricular pacing on right ventricular mechanics and tricuspid regurgitation in patients with high-grade atrioventricular block and sinus rhythm (from the protection of left ventricular function during right ventricular pacing study). Am. J. Cardiol. 116, 1875–1882 (2015).

    PubMed  Google Scholar 

  43. Ahmed, F. Z. et al. One-month global longitudinal strain identifies patients who will develop pacing-induced left ventricular dysfunction over time: the Pacing and Ventricular Dysfunction (PAVD) Study. PloS ONE 12, e0162072 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Madhavan, M., Mulpuru, S. K., McLeod, C. J., Cha, Y. M. & Friedman, P. A. Advances and future directions in cardiac pacemakers: part 2 of a 2-part series. J. Am. Coll. Cardiol. 69, 211–235 (2017).

    PubMed  Google Scholar 

  45. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    PubMed  Google Scholar 

  46. Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    CAS  PubMed  Google Scholar 

  47. Leclercq, C. et al. A randomized comparison of triple-site versus dual-site ventricular stimulation in patients with congestive heart failure. J. Am. Coll. Cardiol. 51, 1455–1462 (2008).

    PubMed  Google Scholar 

  48. Turakhia, M. P. et al. Reduced mortality associated with quadripolar compared to bipolar left ventricular leads in cardiac resynchronization therapy. JACC Clin. Electrophysiol. 2, 426–433 (2016).

    PubMed  Google Scholar 

  49. Mulpuru, S. K., Cha, Y. M. & Asirvatham, S. J. Synchronous ventricular pacing with direct capture of the atrioventricular conduction system: functional anatomy, terminology, and challenges. Heart Rhythm 13, 2237–2246 (2016).

    PubMed  Google Scholar 

  50. Vijayaraman, P., Dandamudi, G., Worsnick, S. & Ellenbogen, K. A. Acute His-bundle injury current during permanent His-bundle pacing predicts excellent pacing outcomes. Pacing Clin. Electrophysiol. 38, 540–546 (2015).

    PubMed  Google Scholar 

  51. Mulpuru, S. K., Madhavan, M., McLeod, C. J., Cha, Y. M. & Friedman, P. A. Cardiac pacemakers: function, troubleshooting, and management: part 1 of a 2-part series. J. Am. Coll. Cardiol. 69, 189–210 (2017).

    PubMed  Google Scholar 

  52. Boriani, G. & Padeletti, L. Management of atrial fibrillation in bradyarrhythmias. Nat. Rev. Cardiol. 12, 337–349 (2015).

    PubMed  Google Scholar 

  53. Hauser, R. G. et al. Clinical experience with pacemaker pulse generators and transvenous leads: an 8-year prospective multicenter study. Heart Rhythm 4, 154–160 (2007).

    PubMed  Google Scholar 

  54. Sohail, M. R. et al. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J. Am. Coll. Cardiol. 49, 1851–1859 (2007).

    PubMed  Google Scholar 

  55. Cingolani, E. & Marbán, E. Recreating the sinus node by somatic reprogramming: a dream come true? Rev. Esp. Cardiol. 68, 743–745 (2015).

    PubMed  Google Scholar 

  56. Baddour, L. M. et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation 121, 458–477 (2010).

    PubMed  Google Scholar 

  57. Basar, N. et al. Upper-extremity deep vein thrombosis and downhill esophageal varices caused by long-term pacemaker implantation. Tex. Heart Inst. J. 37, 714–716 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Delling, F. N. et al. Tricuspid regurgitation and mortality in patients with transvenous permanent pacemaker leads. Am. J. Cardiol. 117, 988–992 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Miller, M. A., Neuzil, P., Dukkipati, S. R. & Reddy, V. Y. Leadless cardiac pacemakers: back to the future. J. Am. Coll. Cardiol. 66, 1179–1189 (2015).

    PubMed  Google Scholar 

  60. Reddy, V. Y. et al. Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation 129, 1466–1471 (2014).

    PubMed  Google Scholar 

  61. Piccini, J. P. et al. Long-term outcomes in leadless Micra transcatheter pacemakers with elevated thresholds at implantation: results from the Micra Transcatheter Pacing System Global Clinical Trial. Heart Rhythm 14, 685–691 (2017).

    PubMed  Google Scholar 

  62. Singh, H. R., Batra, A. S. & Balaji, S. Pacing in children. Ann. Pediatr. Cardiol. 6, 46–51 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Fortescue, E. B. et al. Patient, procedural, and hardware factors associated with pacemaker lead failures in pediatrics and congenital heart disease. Heart Rhythm 1, 150–159 (2004).

    PubMed  Google Scholar 

  64. Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015).

    CAS  PubMed  Google Scholar 

  65. Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111, 1927–1932 (2014).

    CAS  PubMed  Google Scholar 

  66. Haeberlin, A. et al. The first batteryless, solar-powered cardiac pacemaker. Heart Rhythm 12, 1317–1323 (2015).

    PubMed  Google Scholar 

  67. Kypta, A. et al. Leadless cardiac pacemaker implantation after lead extraction in patients with severe device infection. J. Cardiovasc. Electrophysiol. 27, 1067–1071 (2016).

    PubMed  Google Scholar 

  68. Bornzin, G. A. et al. Dual-chamber leadless intra-cardiac medical device with intra-cardiac extension. U.S. Patent 8634912 (2014).

  69. Schaldach, M. & Hutten, H. Intracardiac impedance to determine sympathetic activity in rate responsive pacing. Pacing Clin. Electrophysiol. 15, 1778–1786 (1992).

    CAS  PubMed  Google Scholar 

  70. Ellenbogen, K. A., Kay, G. N. & Wilkoff, B. L. Clinical Cardiac Pacing (W. B. Saunders Company, 1995).

    Google Scholar 

  71. Lloyd, M. et al. Rate adaptive pacing in an intracardiac pacemaker. Heart Rhythm 14, 200–205 (2017).

    PubMed  Google Scholar 

  72. Cho, H. C. & Marbán, E. Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circul. Res. 106, 674–685 (2010).

    CAS  Google Scholar 

  73. Rosen, M. R. Gene therapy and biological pacing. N. Engl. J. Med. 371, 1158–1159 (2014).

    CAS  PubMed  Google Scholar 

  74. Rosen, M. R., Robinson, R. B., Brink, P. R. & Cohen, I. S. The road to biological pacing. Nature reviews. Cardiology 8, 656–666 (2011).

    PubMed  Google Scholar 

  75. Cingolani, E. Biological pacemakers: Ready for the clinic? Trends Cardiovasc. Med. 25, 674–675 (2015).

    PubMed  Google Scholar 

  76. Gutierrez, M. et al. Maternal connective tissue disease associated with congenital AV block [Spanish]. Rev. Med. Chil. 117, 789–793 (1989).

    CAS  PubMed  Google Scholar 

  77. Scott, J. S. & Taylor, P. V. Congenital AV-block: role of anti-Ro and anti-La antibodies. Springer Semin. Immunopathol. 11, 397–408 (1989).

    CAS  PubMed  Google Scholar 

  78. Edelberg, J. M., Aird, W. C. & Rosenberg, R. D. Enhancement of murine cardiac chronotropy by the molecular transfer of the human β2 adrenergic receptor cDNA. J. Clin. Invest. 101, 337–343 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Edelberg, J. M., Huang, D. T., Josephson, M. E. & Rosenberg, R. D. Molecular enhancement of porcine cardiac chronotropy. Heart 86, 559–562 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Miake, J., Marban, E. & Nuss, H. B. Biological pacemaker created by gene transfer. Nature 419, 132–133 (2002).

    CAS  PubMed  Google Scholar 

  81. Miake, J., Marban, E. & Nuss, H. B. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J. Clin. Invest. 111, 1529–1536 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tristani-Firouzi, M. et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Invest. 110, 381–388 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Baruscotti, M., Bucchi, A. & Difrancesco, D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol. Ther. 107, 59–79 (2005).

    CAS  PubMed  Google Scholar 

  84. Qu, J. et al. Expression and function of a biological pacemaker in canine heart. Circulation 107, 1106–1109 (2003).

    PubMed  Google Scholar 

  85. Plotnikov, A. N. et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109, 506–512 (2004).

    PubMed  Google Scholar 

  86. Rosen, M. R., Brink, P. R., Cohen, I. S. & Robinson, R. B. Genes, stem cells and biological pacemakers. Cardiovasc. Res. 64, 12–23 (2004).

    CAS  PubMed  Google Scholar 

  87. Ruhparwar, A. et al. Transplanted fetal cardiomyocytes as cardiac pacemaker. Eur. J. Cardiothorac. Surg. 21, 853–857 (2002).

    PubMed  Google Scholar 

  88. Xu, C., Police, S., Rao, N. & Carpenter, M. K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circul. Res. 91, 501–508 (2002).

    CAS  Google Scholar 

  89. Xue, T. et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111, 11–20 (2005).

    PubMed  Google Scholar 

  90. Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22, 1282–1289 (2004).

    CAS  PubMed  Google Scholar 

  91. Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).

    CAS  PubMed  Google Scholar 

  92. Chauveau, S. et al. Induced pluripotent stem cell-derived cardiomyocytes provide in vivo biological pacemaker function. Circul. Arrhythmia Electrophysiol. 10, e004508 (2017).

    Google Scholar 

  93. Plotnikov, A. N. et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 116, 706–713 (2007).

    PubMed  Google Scholar 

  94. Liechty, K. W. et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6, 1282–1286 (2000).

    CAS  PubMed  Google Scholar 

  95. Cho, H. C., Kashiwakura, Y. & Marban, E. Creation of a biological pacemaker by cell fusion. Circul. Res. 100, 1112–1115 (2007).

    CAS  Google Scholar 

  96. Bucchi, A. et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation 114, 992–999 (2006).

    PubMed  Google Scholar 

  97. Marban, E. & Cingolani, E. Direct reprogramming: bypassing stem cells for therapeutics. JAMA 314, 19–20 (2015).

    CAS  PubMed  Google Scholar 

  98. Hu, Y. F., Dawkins, J. F., Cho, H. C., Marban, E. & Cingolani, E. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl Med. 6, 245ra94 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Potapova, I. et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circul. Res. 94, 952–959 (2004).

    CAS  Google Scholar 

  100. Tse, H. F. et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 114, 1000–1011 (2006).

    CAS  PubMed  Google Scholar 

  101. Cingolani, E. et al. Biological pacemaker created by percutaneous gene delivery via venous catheters in a porcine model of complete heart block. Heart Rhythm 9, 1310–1318 (2012).

    PubMed  Google Scholar 

  102. Liu, Q. et al. The role of capsid-endothelial interactions in the innate immune response to adenovirus vectors. Hum. Gene Ther. 14, 627–643 (2003).

    CAS  PubMed  Google Scholar 

  103. Muruve, D. A. The innate immune response to adenovirus vectors. Hum. Gene Ther. 15, 1157–1166 (2004).

    CAS  PubMed  Google Scholar 

  104. Chua, J. D. et al. Diagnosis and management of infections involving implantable electrophysiologic cardiac devices. Ann. Intern. Med. 133, 604–608 (2000).

    CAS  PubMed  Google Scholar 

  105. Cabell, C. H. et al. Increasing rates of cardiac device infections among Medicare beneficiaries: 1990–1999. Am. Heart J. 147, 582–586 (2004).

    PubMed  Google Scholar 

  106. Athan, E. et al. Clinical characteristics and outcome of infective endocarditis involving implantable cardiac devices. JAMA 307, 1727–1735 (2012).

    CAS  PubMed  Google Scholar 

  107. Sohail, M. R., Henrikson, C. A., Braid-Forbes, M. J., Forbes, K. F. & Lerner, D. J. Mortality and cost associated with cardiovascular implantable electronic device infections. Arch. Intern. Med. 171, 1821–1828 (2011).

    PubMed  Google Scholar 

  108. Mirowski, M., Mower, M. M., Staewen, W. S., Tabatznik, B. & Mendeloff, A. I. Standby automatic defibrillator. An approach to prevention of sudden coronary death. Arch. Intern. Med. 126, 158–161 (1970).

    CAS  PubMed  Google Scholar 

  109. Lown, B. & Axelrod, P. Implanted standby defibrillators. Circulation 46, 637–639 (1972).

    CAS  PubMed  Google Scholar 

  110. Mirowski, M. et al. Termination of malignant ventricular arrhythmias with an implanted automatic defibrillator in human beings. N. Engl. J. Med. 303, 322–324 (1980).

    CAS  PubMed  Google Scholar 

  111. Mond, H. G. & Proclemer, A. The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009 — a World Society of Arrhythmia's project. Pacing Clin. Electrophysiol. 34, 1013–1027 (2011).

    PubMed  Google Scholar 

  112. Bolli, R. Dandum semper est tempus: the crucial importance of (and increasing disregard for) the test of time. Circul. Res. 117, 755–757 (2015).

    CAS  Google Scholar 

  113. Plotnikov, A. N. et al. HCN212-channel biological pacemakers manifesting ventricular tachyarrhythmias are responsive to treatment with If blockade. Heart Rhythm 2, 282–288 (2008).

    Google Scholar 

  114. Shlapakova, I. N. et al. Biological pacemakers in canines exhibit positive chronotropic response to emotional arousal. Heart Rhythm 12, 1835–1840 (2010).

    Google Scholar 

  115. Boink, G. J. et al. HCN2/SkM1 gene transfer into canine left bundle branch induces stable, autonomically responsive biological pacing at physiological heart rates. J. Am. Coll. Cardiol. 61, 1192–1201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work on biological pacemakers in funded by the US NIH RO1 HL135866 and NIH RO1 HL048509.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article, and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Eduardo Marbán.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Action potential

A rise and fall in the electrical potential of the surface membrane of the cell produced by the flow of ions across the cell membrane; pacemaker cells generate spontaneous action potentials that in turn can elicit action potentials in neighbouring cells.

Diastolic depolarization

The spontaneous depolarization of the resting membrane potential during diastole; a unique property of pacemaker cardiomyocytes.

Asynchronous pacing

Fixed rate pacing delivered by the implanted pacemaker independent of any atrial or ventricular activity.

Synchronous pacing

Pacing delivered from the implanted pacemaker on demand if no atrial or ventricular activity is sensed.

Sick sinus syndrome

A sinoatrial node disease that results in slow heart rhythms.

Optical mapping

A laboratory technique that allows high-resolution mapping of the electrical activity of the heart.

Syngeneic

Genetically similar or identical, and hence immunologically compatible.

Heterokaryons

Multinucleate cells that contain genetically different nuclei.

Electroanatomical mapping

A technique used both in the clinic and experimentally that allows mapping of the electrical activity of the heart in vivo.

AV synchrony

The sequential contraction of the atria and the ventricles.

Hydrops fetalis

A serious fetal condition defined as abnormal accumulation of fluid in two or more fetal compartments, including ascites, pleural effusion, pericardial effusion, and skin oedema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cingolani, E., Goldhaber, J. & Marbán, E. Next-generation pacemakers: from small devices to biological pacemakers. Nat Rev Cardiol 15, 139–150 (2018). https://doi.org/10.1038/nrcardio.2017.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.165

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research