Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Cohesin in cancer: chromosome segregation and beyond

Abstract

Cohesin is an evolutionarily conserved, four-subunit complex that entraps DNA fibres within its ring-shaped structure. It was originally identified and named for its role in mediating sister chromatid cohesion, which is essential for chromosome segregation and DNA repair. Increasing evidence indicates that cohesin participates in other processes that involve DNA looping, most importantly, transcriptional regulation. Mutations in genes encoding cohesin subunits and other regulators of the complex have recently been identified in several types of tumours. Whether aneuploidy that results from chromosome missegregation is the major contribution of cohesin mutations to cancer progression is under debate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the cohesin complex.
Figure 2: Cell cycle regulation of cohesin.
Figure 3: Cohesin functions.

Similar content being viewed by others

References

  1. Remeseiro, S. & Losada, A. Cohesin, a chromatin engagement ring. Curr. Opin. Cell Biol. 25, 63–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Barber, T. D. et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc. Natl Acad. Sci. USA 105, 3443–3448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Solomon, D. A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoshida, K. et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nature Genet. 45, 1293–1299 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Kon, A. et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nature Genet. 45, 1232–1237 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, C. F., Platt, F. M., Hurst, C. D., Thygesen, H. H. & Knowles, M. A. Frequent inactivating mutations of STAG2 in bladder cancer are associated with low tumour grade and stage and inversely related to chromosomal copy number changes. Hum. Mol. Genet. 23, 1964–1974 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guo, G. et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nature Genet. 45, 1459–1463 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Balbas-Martinez, C. et al. Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nature Genet. 45, 1464–1469 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Solomon, D. A. et al. Frequent truncating mutations of STAG2 in bladder cancer. Nature Genet. 45, 1428–1430 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Thol, F. et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 123, 914–920 (2013).

    Article  PubMed  Google Scholar 

  12. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322. (2014).

  14. Liu, J. & Krantz, I. D. Cornelia de Lange syndrome, cohesin, and beyond. Clin. Genet. 76, 303–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haering, C. H., Lowe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773–788 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Murayama, Y. & Uhlmann, F. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505, 367–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Tedeschi, A. et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nishiyama, T. et al. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143, 737–749 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Gerlich, D., Koch, B., Dupeux, F., Peters, J. M. & Ellenberg, J. Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr. Biol. 16, 1571–1578 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Nishiyama, T., Sykora, M. M., Huis in 't Veld, P. J., Mechtler, K. & Peters, J. M. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc. Natl Acad. Sci. USA 110, 13404–13409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, H., Rankin, S. & Yu, H. Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nature Cell Biol. 15, 40–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Canudas, S. & Smith, S. Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J. Cell Biol. 187, 165–173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Remeseiro, S. et al. Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J. 31, 2076–2089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carretero, M., Ruiz-Torres, M., Rodriguez-Corsino, M., Barthelemy, I. & Losada, A. Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. EMBO J. 32, 2938–2949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heidinger-Pauli, J. M., Mert, O., Davenport, C., Guacci, V. & Koshland, D. Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr. Biol. 20, 957–963 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, L. H., Mayer, B., Stemmann, O. & Nigg, E. A. Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. J. Cell Sci. 123, 806–813 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Schockel, L., Mockel, M., Mayer, B., Boos, D. & Stemmann, O. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nature Cell Biol. 13, 966–972 (2011).

    Article  PubMed  Google Scholar 

  28. Gibcus, J. H. & Dekker, J. The hierarchy of the 3D genome. Mol. Cell 49, 773–782 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zuin, J. et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl Acad. Sci. USA 111, 996–1001 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119–3129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Remeseiro, S., Cuadrado, A., Gómez-López, G., Pisano, D. G. & Losada, A. A unique role of cohesin-SA1 in gene regulation and development. EMBO J. 31, 2090–2102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rubio, E. D. et al. CTCF physically links cohesin to chromatin. Proc. Natl Acad. Sci. USA 105, 8309–8314 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res. 20, 578–588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monahan, K. et al. Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-α gene expression. Proc. Natl Acad. Sci. USA 109, 9125–9130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duijf, P. H. & Benezra, R. The cancer biology of whole-chromosome instability. Oncogene 32, 4727–4736 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Holland, A. J. & Cleveland, D. W. Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep. 13, 501–514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guillou, E. et al. Cohesin organizes chromatin loops at DNA replication factories. Genes Dev. 24, 2812–2822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stamatoyannopoulos, J. A. et al. Human mutation rate associated with DNA replication timing. Nature Genet. 41, 393–395 (2009).

    CAS  PubMed  Google Scholar 

  42. Xu, H. et al. Rad21-cohesin haploinsufficiency impedes DNA repair and enhances gastrointestinal radiosensitivity in mice. PLoS ONE 5, e12112 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chien, R. et al. Cohesin mediates chromatin interactions that regulate mammalian β-globin expression. J. Biol. Chem. 286, 17870–17878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Remeseiro, S. et al. Reduction of Nipbl impairs cohesin loading locally and affects transcription but not cohesion-dependent functions in a mouse model of Cornelia de Lange syndrome. Biochim. Biophys. Acta 1832, 2097–2102 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Deardorff, M. A. et al. HDAC8 mutations in Cornelia de Lange Syndrome affect the cohesin acetylation cycle. Nature 489, 313–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author apologizes to colleagues whose relevant work on cohesin is not cited here. She thanks the group of F. X. Real (Spanish National Cancer Research Centre (CNIO), Madrid, Spain), as well as members of her own group, for discussions. The author's research is currently funded by the Spanish Ministry of Economy and Competitiveness (MINECO), grant SAF-2010-21517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Losada.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losada, A. Cohesin in cancer: chromosome segregation and beyond. Nat Rev Cancer 14, 389–393 (2014). https://doi.org/10.1038/nrc3743

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3743

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer