Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

bHLH–PAS proteins in cancer

Key Points

  • The basic HLH (helix–loop–helix)–PER–ARNT–SIM (bHLH–PAS) family of transcriptional regulators are characterized by an amino-terminal bHLH domain and PAS domains that are involved in dimerization, DNA binding and signal transduction.

  • The PAS domain is an evolutionarily conserved protein fold, which is often capable of binding to ligands or relaying signals. PAS domains also have important roles in mediating or restricting protein–protein interactions.

  • bHLH–PAS factors have diverse roles, which include sensing and responding to environmental pollutants (through the aryl hydrocarbon receptor (AHR)), hypoxic sensing (through hypoxia-inducible factor 1α (HIF1α) and HIF2α), circadian rhythm formation (through circadian locomotor output cycles kaput (CLOCK), neuronal PAS2 (NPAS2), brain muscle ARNT-like 1 (BMAL1), period circadian protein homologue 1 (PER1) and PER2), transactivation (through nuclear receptor co-activators (NCOAs)) of hormone signalling via nuclear receptors, appetite control (through single-minded homologue 1 (SIM1)), neurogenesis (through SIM1, SIM2 and NPAS3) and synapse formation (through NPAS4).

  • bHLH–PAS proteins, including AHR, HIFs and NCOAs, have important links with cancer and cancer metabolism. This has been shown using many mouse models and expression studies of human cancers.

  • Crosstalk between various bHLH–PAS family members can occur directly through competition for common partner proteins or DNA elements (for example, between HIF and SIM). This might promote tumour survival when these factors are misregulated.

  • Metabolites (kynurenine and NAD+) and oncometabolites (benzo[a]pyrene derivatives and (R)-2-hydroxyglutarate) can modulate or mediate the activity of several bHLH–PAS proteins (including the AHR, the HIFs and circadian rhythm factors CLOCK, BMAL1 and PER2) that have direct relevance to cancer.

  • bHLH–PAS structural resolution and high-throughput activity screens have facilitated the identification of small-molecule modifiers of bHLH–PAS factor activities, which may be useful as cancer therapeutics.

Abstract

Mammalian basic HLH (helix–loop–helix)–PER–ARNT–SIM (bHLH–PAS) proteins are heterodimeric transcription factors that sense and respond to environmental signals (such as pollutants) or to physiological signals (for example, hypoxia and circadian rhythms) through their two PAS domains. PAS domains form a generic three-dimensional fold, which commonly contains an internal cavity capable of small-molecule binding and outer surfaces adept at protein–protein interactions. These proteins are important in several pro-tumour and antitumour pathways and their activities can be modulated by both natural metabolites and oncometabolites. Recently determined structures and successful small-molecule screening programmes are now providing new opportunities to discover selective agonists and antagonists directed against this multitasking family of transcription factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Roles and structures of class I and class II bHLH–PAS family members.
Figure 2: Ligand activation of AHR and control by negative feedback mechanisms.
Figure 3: 2-oxoglutarate-dependent enzymes feed into the hypoxic response and circadian rhythm pathways.
Figure 4: NAD+-dependent enzymes contribute to the hypoxic response and circadian rhythm pathways.
Figure 5: Competition between HIF1α and SIM2.

Similar content being viewed by others

References

  1. McIntosh, B. E., Hogenesch, J. B. & Bradfield, C. A. Mammalian Per-Arnt-SIM proteins in environmental adaptation. Annu. Rev. Physiol. 72, 625–645 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Michaud, J. L. et al. SIM1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum. Mol. Genet. 10, 1465–1473 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Ramamoorthi, K. et al. Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science 334, 1669–1675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Furness, S. G., Lees, M. J. & Whitelaw, M. L. The dioxin (aryl hydrocarbon) receptor as a model for adaptive responses of bHLH/PAS transcription factors. FEBS Lett. 581, 3616–3625 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Kewley, R. J., Whitelaw, M. L. & Chapman-Smith, A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int. J. Biochem. Cell Biol. 36, 189–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Pongratz, I., Antonsson, C., Whitelaw, M. L. & Poellinger, L. Role of the PAS domain in regulation of dimerization and DNA binding specificity of the dioxin receptor. Mol. Cell. Biol. 18, 4079–4088 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taylor, B. L. & Zhulin, I. B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, N. et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337, 189–194 (2012). This paper describes the X-ray crystal structure of N-terminal bHLH–PASA–PASB of CLOCK–BMAL1. This is the first bHLH–PAS dimeric structure of any bHLH–PAS factor to be shown.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McGuire, J., Okamoto, K., Whitelaw, M. L., Tanaka, H. & Poellinger, L. Definition of a dioxin receptor mutant that is a constitutive activator of transcription: delineation of overlapping repression and ligand binding functions within the PAS domain. J. Biol. Chem. 276, 41841–41849 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. To, K. K., Sedelnikova, O. A., Samons, M., Bonner, W. M. & Huang, L. E. The phosphorylation status of PAS-B distinguishes HIF-1α from HIF-2α in NBS1 repression. EMBO J. 25, 4784–4794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo, Y. et al. Regulating the ARNT/TACC3 axis: multiple approaches to manipulating protein/protein interactions with small molecules. ACS Chem. Biol. 8, 626–635 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Partch, C. L. & Gardner, K. H. Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B. Proc. Natl Acad. Sci. USA 108, 7739–7744 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Okui, M. et al. Transcription factor single-minded 2 (SIM2) is ubiquitinated by the RING-IBR-RING-type E3 ubiquitin ligases. Exp. Cell Res. 309, 220–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Hao, N., Whitelaw, M. L., Shearwin, K. E., Dodd, I. B. & Chapman-Smith, A. Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR. Nucleic Acids Res. 39, 3695–3709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beischlag, T. V. et al. Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol. Cell. Biol. 22, 4319–4333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, F., Zhang, R., Wu, X. & Hankinson, O. Roles of coactivators in hypoxic induction of the erythropoietin gene. PLoS ONE 5, e10002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Woods, S. L. & Whitelaw, M. L. Differential activities of murine single minded 1 (SIM1) and SIM2 on a hypoxic response element. Cross-talk between basic helix-loop-helix/per-Arnt-SIM homology transcription factors. J. Biol. Chem. 277, 10236–10243 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Ema, M. et al. Two new members of the murine SIM gene family are transcriptional repressors and show different expression patterns during mouse embryogenesis. Mol. Cell. Biol. 16, 5865–5875 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oshima, M., Mimura, J., Sekine, H., Okawa, H. & Fujii-Kuriyama, Y. SUMO modification regulates the transcriptional repressor function of aryl hydrocarbon receptor repressor. J. Biol. Chem. 284, 11017–11026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Denison, M. S., Soshilov, A. A., He, G., DeGroot, D. E. & Zhao, B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 124, 1–22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hao, N. et al. Xenobiotics and loss of cell adhesion drive distinct transcriptional outcomes by aryl hydrocarbon receptor signaling. Mol. Pharmacol. 82, 1082–1093 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen, L. P. & Bradfield, C. A. The search for endogenous activators of the aryl hydrocarbon receptor. Chem. Res. Toxicol. 21, 102–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Denissenko, M. F., Pao, A., Tang, M. & Pfeifer, G. P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274, 430–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimizu, Y. et al. Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA 97, 779–782 (2000). This paper was the first to definitively show that AHR is essential for the metabolism of B[a]P into a potent carcinogenic compound in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011). This study establishes that elevated TDO in gliomas produces aberrantly high levels of the AHR ligand, kynurenine, which leads to autocrine and paracrine mechanisms of tumour promotion.

    Article  CAS  PubMed  Google Scholar 

  27. Andersson, P. et al. A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc. Natl Acad. Sci. USA 99, 9990–9995 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moennikes, O. et al. A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res. 64, 4707–4710 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawajiri, K. et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc. Natl Acad. Sci. USA 106, 13481–13486 (2009). This paper uses mouse models to show that the ubiquitin ligase activity of AHR can degrade β-catenin in the intestines and can thus have a tumour-suppressive function.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ikuta, T. et al. ASC-associated inflammation promotes cecal tumorigenesis in aryl hydrocarbon receptor-deficient mice. Carcinogenesis 34, 1620–1627 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Ohtake, F. et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423, 545–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Ohtake, F. et al. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446, 562–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Fritz, W. A., Lin, T. M. & Peterson, R. E. The aryl hydrocarbon receptor (AhR) inhibits vanadate-induced vascular endothelial growth factor (VEGF) production in TRAMP prostates. Carcinogenesis 29, 1077–1082 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shin, J. H. et al. Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA 110, 12391–12396 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cuzick, J. et al. Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 381, 1827–1834 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keith, B., Adelman, D. M. & Simon, M. C. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc. Natl Acad. Sci. USA 98, 6692–6697 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hao, N., Bhakti, V. L., Peet, D. J. & Whitelaw, M. L. Reciprocal regulation of the basic helix-loop-helix/Per-Arnt-SIM partner proteins, Arnt and Arnt2, during neuronal differentiation. Nucleic Acids Res. 41, 5626–5638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012). This is an excellent review of the HIFs, their regulation and their roles in normal physiology and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Hewitson, K. S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Whitelaw, M. L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858–861 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Heikkila, M., Pasanen, A., Kivirikko, K. I. & Myllyharju, J. Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell. Mol. Life Sci. 68, 3885–3901 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Makino, Y., Kanopka, A., Wilson, W. J., Tanaka, H. & Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J. Biol. Chem. 277, 32405–32408 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Kaelin, W. G. Jr. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 76, 335–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nature Rev. Cancer 12, 9–22 (2012). This is a recent review that compares and contrasts the distinct roles of HIF1α and HIF2α in cancer.

    Article  CAS  Google Scholar 

  51. Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Uniacke, J. et al. An oxygen-regulated switch in the protein synthesis machinery. Nature 486, 126–129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaelin, W. G. Jr & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. King, A., Selak, M. A. & Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Pollard, P. J., Wortham, N. C. & Tomlinson, I. P. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann. Med. 35, 632–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005). References 56, 57 and 59 are key studies that show that the accumulation of the metabolites fumarate, succinate and ( R )-2-HG, as a result of cancer-associated mutations in fumarate hydratase, succinate dehydrogenase and IDH, respectively, lead to deregulation of HIF by altering PHD activity.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao, S. et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324, 261–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sasaki, M. et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 26, 2038–2049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sasaki, M. et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488, 656–659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Poon, E., Harris, A. L. & Ashcroft, M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev. Mol. Med. 11, e26 (2009).

    Article  PubMed  Google Scholar 

  64. Wang, R., Zhou, S. & Li, S. Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr. Med. Chem. 18, 3168–3189 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Erbel, P. J., Card, P. B., Karakuzu, O., Bruick, R. K. & Gardner, K. H. Structural basis for PAS domain heterodimerization in the basic helix–loop–helix-PAS transcription factor hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 100, 15504–15509 (2003). This manuscript describes the first determination of a HIF PAS structure — the HIF–PASB domain — using NMR, which has been crucial for structure-based therapeutic targeting of the HIF PAS domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scheuermann, T. H. et al. Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc. Natl Acad. Sci. USA 106, 450–455 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Motto, I., Bordogna, A., Soshilov, A. A., Denison, M. S. & Bonati, L. New aryl hydrocarbon receptor homology model targeted to improve docking reliability. J. Chem. Inf. Model. 51, 2868–2881 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nature Chem. Biol. 9, 271–276 (2013).

    Article  CAS  Google Scholar 

  69. Halavaty, A. S. & Moffat, K. N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry 46, 14001–14009 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, K. et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl Acad. Sci. USA 106, 17910–17915 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Miranda, E. et al. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J. Am. Chem. Soc. 135, 10418–10425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lowrey, P. L. & Takahashi, J. S. Genetics of circadian rhythms in mammalian model organisms. Adv. Genet. 74, 175–230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kucera, N. et al. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl Acad. Sci. USA 109, 3311–3316 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sahar, S. & Sassone-Corsi, P. Metabolism and cancer: the circadian clock connection. Nature Rev. Cancer 9, 886–896 (2009).

    Article  CAS  Google Scholar 

  75. Fu, L. & Lee, C. C. The circadian clock: pacemaker and tumour suppressor. Nature Rev. Cancer 3, 350–361 (2003).

    Article  CAS  Google Scholar 

  76. Lee, S., Donehower, L. A., Herron, A. J., Moore, D. D. & Fu, L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS ONE 5, e10995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fu, L., Pelicano, H., Liu, J., Huang, P. & Lee, C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Gery, S. et al. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol. Cell 22, 375–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, S. T. et al. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26, 1241–1246 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Hwang-Verslues, W. W. et al. Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1222684110 (2013).

  81. Ozturk, N., Lee, J. H., Gaddameedhi, S. & Sancar, A. Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc. Natl Acad. Sci. USA 106, 2841–2846 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Janich, P. et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480, 209–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Bass, J. Circadian topology of metabolism. Nature 491, 348–356 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Asher, G. & Schibler, U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell. Metab. 13, 125–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. DiTacchio, L. et al. Histone lysine demethylase JARID1a activates CLOCK–BMAL1 and influences the circadian clock. Science 333, 1881–1885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van Zutven, L. J. et al. Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene. Genes Chromosomes Cancer 45, 437–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, G. G. et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459, 847–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, X. et al. Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res. 70, 4214–4221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chiarugi, A., Dolle, C., Felici, R. & Ziegler, M. The NAD metabolome — a key determinant of cancer cell biology. Nature Rev. Cancer 12, 741–752 (2012).

    Article  CAS  Google Scholar 

  90. Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK–SIRT1. Science 324, 654–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–514 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008). References 90–94 describe how CLOCK–BMAL1 regulation of NAMPT controls the circadian rhythm of NAD+ levels, which can in turn regulate circadian gene expression through modulation of SIRT1 deactylase activity.

    Article  CAS  PubMed  Google Scholar 

  95. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J. D. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447, 477–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086–1090 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Geyfman, M. et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc. Natl Acad. Sci. USA 109, 11758–11763 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kang, T. H., Lindsey-Boltz, L. A., Reardon, J. T. & Sancar, A. Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc. Natl Acad. Sci. USA 107, 4890–4895 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kang, T. H., Reardon, J. T., Kemp, M. & Sancar, A. Circadian oscillation of nucleotide excision repair in mammalian brain. Proc. Natl Acad. Sci. USA 106, 2864–2867 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lee, J. H. & Sancar, A. Circadian clock disruption improves the efficacy of chemotherapy through p73-mediated apoptosis. Proc. Natl Acad. Sci. USA 108, 10668–10672 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gorbacheva, V. Y. et al. Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc. Natl Acad. Sci. USA 102, 3407–3412 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, Z., Yoo, S. H. & Takahashi, J. S. Small molecule modifiers of circadian clocks. Cell. Mol. Life Sci. 70, 2985–2998 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Chen, Z. et al. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc. Natl Acad. Sci. USA 109, 101–106 (2012).

    Article  PubMed  Google Scholar 

  107. Solt, L. A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hirota, T. et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 8, e1000559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xu, J., Wu, R. C. & O'Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nature Rev. Cancer 9, 615–630 (2009).

    Article  CAS  Google Scholar 

  111. Spencer, T. E. et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Razeto, A. et al. Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J. Mol. Biol. 336, 319–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Lodrini, M. et al. P160/SRC/NCoA coactivators form complexes via specific interaction of their PAS-B domain with the CID/AD1 domain. Nucleic Acids Res. 36, 1847–1860 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, S. K., Kim, H. J., Kim, J. W. & Lee, J. W. Steroid receptor coactivator-1 and its family members differentially regulate transactivation by the tumor suppressor protein p53. Mol. Endocrinol. 13, 1924–1933 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, J. H., Li, H. & Stallcup, M. R. CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators. Mol. Cell 12, 1537–1549 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Kuang, S. Q. et al. AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res. 64, 1875–1885 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Belandia, B., Orford, R. L., Hurst, H. C. & Parker, M. G. Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J. 21, 4094–4103 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Johnson, A. B. & O'Malley, B. W. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol. Cell Endocrinol. 348, 430–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Kumar, M. B. & Perdew, G. H. Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation potential. Gene Expr. 8, 273–286 (1999).

    CAS  PubMed  Google Scholar 

  121. Carrero, P. et al. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α. Mol. Cell. Biol. 20, 402–415 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bouras, T., Southey, M. C. & Venter, D. J. Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res. 61, 903–907 (2001).

    CAS  PubMed  Google Scholar 

  123. Fleming, F. J. et al. Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J. Clin. Pathol. 57, 1069–1074 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Reiter, R., Wellstein, A. & Riegel, A. T. An isoform of the coactivator AIB1 that increases hormone and growth factor sensitivity is overexpressed in breast cancer. J. Biol. Chem. 276, 9736–39741 (2001).

    Article  CAS  Google Scholar 

  126. Reiter, R., Oh, A. S., Wellstein, A. & Riegel, A. T. Impact of the nuclear receptor coactivator AIB1 isoform AIB1-Delta3 on estrogenic ligands with different intrinsic activity. Oncogene 23, 403–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Anzick, S. L. et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997). This paper, along with reference 24, shows that NCOA3 is commonly amplified in 10% of breast cancers and is considered a bone fide driver of cancer.

    Article  CAS  PubMed  Google Scholar 

  128. Bautista, S. et al. In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin. Cancer Res. 4, 2925–2929 (1998).

    CAS  PubMed  Google Scholar 

  129. Torres-Arzayus, M. I. et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6, 263–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Kuang, S. Q. et al. Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis. Cancer Res. 65, 7993–8002 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Fereshteh, M. P. et al. The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling, and mammary tumorigenesis in mice. Cancer Res. 68, 3697–3706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, S. et al. Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc. Natl Acad. Sci. USA 106, 151–156 (2009).

    Article  PubMed  Google Scholar 

  133. Yan, J. et al. Steroid receptor coactivator-3/AIB1 promotes cell migration and invasiveness through focal adhesion turnover and matrix metalloproteinase expression. Cancer Res. 68, 5460–5468 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Geng, C. et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc. Natl Acad. Sci. USA 110, 6997–7002 (2013). This paper describes how the SPOP inactivating mutation that occurs in 15% of prostate cancer cases leads to the accumulation of NCOA3 as a result of the loss of SPOP-mediated ubiquitylation and proteosomal degradation.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. O'Donnell, K. A. et al. A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer. Proc. Natl Acad. Sci. USA 109, E1377–E1386 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Carapeti, M., Aguiar, R. C. T., Goldman, J. M. & Cross, N. C. P. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91, 3127–3133 (1998).

    CAS  PubMed  Google Scholar 

  141. Liang, J., Prouty, L., Williams, B. J., Dayton, M. A. & Blanchard, K. L. Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92, 2118–2122 (1998).

    CAS  PubMed  Google Scholar 

  142. Deguchi, K. et al. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3, 259–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Huntly, B. J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Goshu, E. et al. SIM2 contributes to neuroendocrine hormone gene expression in the anterior hypothalamus. Mol. Endocrinol. 18, 1251–1262 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Havis, E. et al. SIM2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis. Development 139, 1910–1920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chrast, R. et al. Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (SIM2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. Hum. Mol. Genet. 9, 1853–1864 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. DeYoung, M. P., Tress, M. & Narayanan, R. Identification of Down's syndrome critical locus gene SIM2-s as a drug therapy target for solid tumors. Proc. Natl Acad. Sci. USA 100, 4760–4765 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Aleman, M. J. et al. Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells. Proc. Natl Acad. Sci. USA 102, 12765–12770 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Laffin, B. et al. Loss of singleminded-2s in the mouse mammary gland induces an epithelial-mesenchymal transition associated with up-regulation of slug and matrix metalloprotease 2. Mol. Cell. Biol. 28, 1936–1946 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. DeYoung, M. P., Tress, M. & Narayanan, R. Down's syndrome-associated Single Minded 2 gene as a pancreatic cancer drug therapy target. Cancer Lett. 200, 25–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Halvorsen, O. J. et al. Increased expression of SIM2-s protein is a novel marker of aggressive prostate cancer. Clin. Cancer Res. 13, 892–897 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Arredouani, M. S. et al. Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin. Cancer Res. 15, 5794–5802 (2009). References 147, 151 and 152 show that SIM2 mRNA and SIM2 protein is increased in prostate cancers and correlates with increased tumour aggressiveness and decreased patient survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Long, Q. et al. Protein-coding and microRNA biomarkers of recurrence of prostate cancer following radical prostatectomy. Am. J. Pathol. 179, 46–54 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Scribner, K. C., Wellberg, E. A., Metz, R. P. & Porter, W. W. Singleminded-2s (SIM2s) promotes delayed involution of the mouse mammary gland through suppression of Stat3 and NFκB. Mol. Endocrinol. 25, 635–644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Scribner, K. C., Behbod, F. & Porter, W. W. Regulation of DCIS to invasive breast cancer progression by Singleminded-2s (SIM2s). Oncogene 32, 2631–2639 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Wellberg, E., Metz, R. P., Parker, C. & Porter, W. W. The bHLH/PAS transcription factor singleminded 2s promotes mammary gland lactogenic differentiation. Development 137, 945–952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vezina, C. M., Lin, T. M. & Peterson, R. E. AHR signaling in prostate growth, morphogenesis, and disease. Biochem. Pharmacol. 77, 566–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Metz, R. P., Kwak, H. I., Gustafson, T., Laffin, B. & Porter, W. W. Differential transcriptional regulation by mouse single-minded 2s. J. Biol. Chem. 281, 10839–10848 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Farrall, A. L. & Whitelaw, M. L. The HIF1α-inducible pro-cell death gene BNIP3 is a novel target of SIM2s repression through cross-talk on the hypoxia response element. Oncogene 28, 3671–3680 (2009). This paper shows that SIM2 can inhibit the expression of a HIF-regulated gene ( BNIP3 ) by competing with HIF for binding to the promoter HRE.

    Article  CAS  PubMed  Google Scholar 

  160. Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Siepka, S. M. et al. Circadian mutant overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell 129, 1011–1023 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yoo, S. H. et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152, 1091–1105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shirogane, T., Jin, J., Ang, X. L. & Harper, J. W. SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280, 26863–26872 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Yin, L. et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786–1789 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Hankinson, O. Why does ARNT2 behave differently from ARNT? Toxicol. Sci. 103, 1–3 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. King, H. A., Hoelz, A., Crane, B. R. & Young, M. W. Structure of an enclosed dimer formed by the Drosophila period protein. J. Mol. Biol. 413, 561–572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lim, J. H. et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol. Cell 38, 864–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Dioum, E. M. et al. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science 324, 1289–1293 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Fan, Y. et al. The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer Res. 70, 212–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Liao, D., Corle, C., Seagroves, T. N. & Johnson, R. S. Hypoxia-inducible factor-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res. 67, 563–572 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Mazumdar, J. et al. HIF-2α deletion promotes Kras-driven lung tumor development. Proc. Natl Acad. Sci. USA 107, 14182–14187 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Doedens, A. L. et al. Macrophage expression of hypoxia-inducible factor-1 α suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465–7475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Imtiyaz, H. Z. et al. Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Invest. 120, 2699–2714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wood, P. A. et al. Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol. Cancer Res. 6, 1786–1793 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chang, H.-C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray L. Whitelaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bersten, D., Sullivan, A., Peet, D. et al. bHLH–PAS proteins in cancer. Nat Rev Cancer 13, 827–841 (2013). https://doi.org/10.1038/nrc3621

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3621

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer