Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Laminin 332 in squamous-cell carcinoma

Key Points

  • Laminin 332, a large multidomain molecule involved in cell adhesion and matrix assembly, is a prominent component of squamous-cell carcinoma (SCC) extracellular matrix. The levels of laminin 332 expression in SCC tumours correlate with tumour invasion and patient prognosis.

  • Proteolytic processing of the γ2 and α3 chains of laminin 332 has been linked to cell migration and invasion. Members of the astacin family process the γ2chain, and various enzymes, including astacin enzymes, matrix metalloproteinase 2 (MMP2), MT1-MMP and plasmin process the α3 chain.

  • The association of cells with laminin 332 occurs through α3β1 integrin in focal adhesions and α6β4 in stable anchoring contacts, which contain an assembly of hemidesmosome proteins.

  • The binding of laminin 332 to β1 integrin promotes RHOA GTPase-driven non-directional migration, whereas the binding of laminin 332 to β4 integrin promotes RAC1 GTPase-driven directional migration.

  • An in vivo model of human SCC tumour development has shown the essential role of laminin-332, α6β4 integrin and collagen VII, which associate and drive SCC tumorigenesis through phosphatidylinositol-3 kinase (PI3K) activation.

  • The laminin G4–5 domain is a proteolytic product of laminin 332 that promotes laminin 332 deposition, is expressed in healing wounds and might have a role in SCC formation.

  • The binding of collagen VII or the proteolytic processing of laminin 332 might regulate epidermal growth factor receptor (EGFR) activation, which functions in concert with α6β4 integrin signalling to drive SCC tumorigenesis.

Abstract

Basement membranes can be a barrier to tumour growth, but basement membrane molecules, including laminins, are also important autocrine factors produced by cancers to promote tumorigenesis. Many studies have shown the importance of laminin 332 (previously known as laminin 5) in this process, especially in squamous cell carcinoma. Through interactions with several cell-surface receptors (including α6β4 and α3β1 integrins, epidermal growth factor receptor and syndecan 1) and other basement membrane components (including type VII collagen), laminin 332 drives tumorigenesis through phosphatidylinositol-3 kinase (PI3K) and RAC1 activation, promoting tumour invasion and cell survival. The extracellular interactions of laminin 332 appear amenable to antibody-mediated therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison between laminin 111 and laminin 332.
Figure 2: Laminin 332 promotes two separate integrin-mediated epithelial adhesion contacts.
Figure 3: A model of human squamous cell carcinoma tumorigenesis.
Figure 4: Multiple laminin 332 domains coordinately promote tumorigenesis.
Figure 5: Possible mechanisms for laminin processing and collagen VII binding in tumorigenesis.

Similar content being viewed by others

References

  1. Miller, D. L. & Weinstock, M. A. Nonmelanoma skin cancer in the United States: incidence. J. Am. Acad. Dermatol. 30, 774–778 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Czarnecki, D., Staples, M., Mar, A., Giles, G. & Meehan, C. Metastases from squamous cell carcinoma of the skin in southern Australia. Dermatology 189, 52–54 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. McGowan, K. A. & Marinkovich, M. P. Laminins and human disease. Microsc. Res. Tech. 51, 262–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Keene, D. R., Marinkovich, M. P. & Sakai, L. Y. Immunodissection of the connective tissue matrix in human skin. Microsc. Res. Tech. 38, 394–406 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Beauvais, D. M. & Rapraeger, A. C. Syndecans in tumor cell adhesion and signaling. Reprod. Biol. Endocrinol. 2, 3 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nature Rev. Mol. Cell Biol. 5, 816–826 (2004).

    Article  CAS  Google Scholar 

  7. Hornebeck, W. & Maquart, F. X. Proteolyzed matrix as a template for the regulation of tumor progression. Biomed. Pharmacother. 57, 223–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Mareel, M. & Leroy, A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev. 83, 337–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Liotta, L. A., Rao, C. N. & Wewer, U. M. Biochemical interactions of tumor cells with basement membrane. Ann. Rev. Biochem. 55, 1037–1057 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67–68 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Sasaki, T., Fassler, R. & Hohenester, E. Laminin: the crux of basement membrane assembly. J. Cell Biol. 164, 959–963 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryan, M. C. et al. The functions of laminins: lessons from in vivo studies. Matrix Biol. 15, 369–381 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Marinkovich, M. P. et al. The basement membrane proteins kalinin and nicein are structurally and immunologically identical. Lab. Invest. 69, 295–299 (1993).

    CAS  PubMed  Google Scholar 

  14. Meneguzzi, G. et al. Kalinin is abnormally expressed in epithelial basement membranes of Herlitz's junctional epidermolysis bullosa patients. Exp. Dermatol. 1, 221–229 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Pulkkinen, L. et al. A homozygous nonsense mutation in the beta 3 chain gene of laminin 5 (LAMB3) in Herlitz junctional epidermolysis bullosa. Genomics 24, 357–360 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Aberdam, D. et al. Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the gamma 2 subunit of nicein/kalinin (LAMININ-5). Nature Genet. 6, 299–304 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Martin, G. R. & Timpl, R. Laminin and other basement membrane components. Annu. Rev. Cell Biol. 3, 57–85 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Kallunki, P. et al. A truncated laminin chain homologous to the B2 chain: structure, spacial expression, and chromosomal assignment. J. Cell Biol. 119, 679–694 (1992). Identification of laminin 332 as a member of the laminin family.

    Article  CAS  PubMed  Google Scholar 

  19. Mizushima, H. et al. Differential expression of laminin-5/ladsin subunits in human tissues and cancer cell lines and their induction by tumor promoter and growth factors. J. Biochem. (Tokyo) 120, 1196–1202 (1996).

    Article  CAS  Google Scholar 

  20. Pyke, C. et al. Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res. 55, 4132–4139 (1995). Early extensive survey of laminin 332 in human carcinomas.

    CAS  PubMed  Google Scholar 

  21. Tani, T. et al. Pancreatic carcinomas deposit laminin-5, preferably adhere to laminin-5, and migrate on the newly deposited basement membrane. Am. J. Pathol. 151, 1289–1302 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Berndt, A., Hyckel, P., Könneker, A., Katenkamp, D. & Kosmehl, H. Oral squamous cell carcinoma invasion is associated with a laminin-5 matrix re-organization but independent of basement membrane and hemidesmosome formation. Clues from an in vitro invasion model. Invasion Metastasis 17, 251–258 (1997).

    CAS  PubMed  Google Scholar 

  23. Orian-Rousseau, V. et al. Human colonic cancer cells synthesize and adhere to laminin-5. Their adhesion to laminin-5 involves multiple receptors among which is integrin alpha2beta1. J. Cell Sci. 111, 1993–2004 (1998).

    CAS  PubMed  Google Scholar 

  24. Skyldberg, B. et al. Laminin-5 as a marker of invasiveness in cervical lesions. J. Natl Cancer Inst. 91, 1882–1887 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Ono, Y. et al. Clinocopathologic significance of laminin-5 γ2 chain expression in squamous cell carcinoma of the tongue: immunohistochemical analysis of 67 lesions. Cancer 85, 2315–2321 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Lohi, J. et al. Basement membrane laminin-5 is deposited in colorectal adenomas and carcinomas and serves as a ligand for α3β1 integrin. APMIS 108, 161–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Nordemar, S. et al. Laminin-5 as a predictor of invasiveness in cancer in situ lesions of the larynx. Anticancer Res. 21, 509–512 (2001).

    CAS  PubMed  Google Scholar 

  28. Lenander, C. et al. Laminin-5 gamma 2 chain expression correlates with unfavorable prognosis in colon carcinomas. Anal. Cell. Pathol. 22, 201–209 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calaluce, R. et al. Laminin-5-mediated gene expression in human prostate carcinoma cells. Mol. Carcinog. 30, 119–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Nordemar, S., Hogmo, A., Lindholm, J., Auer, G. & Munck-Wikland, E. Laminin-5 gamma 2: a marker to identify oral mucosal lesions at risk for tumor development? Anticancer Res. 23, 4985–4989 (2003).

    PubMed  Google Scholar 

  31. Giannelli, G., Fransvea, E., Bergamini, C., Marinosci, F. & Antonaci, S. Laminin-5 chains are expressed differentially in metastatic and nonmetastatic hepatocellular carcinoma. Clin. Cancer Res. 9, 3684–3691 (2003).

    CAS  PubMed  Google Scholar 

  32. Yamamoto, H., Itoh, F., Iku, S., Hosokawa, M. & Imai, K. Expression of the γ (2) chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Clin. Cancer Res. 7, 896–900 (2001).

    CAS  PubMed  Google Scholar 

  33. Nordstrom, B. et al. Laminin-5 gamma 2 chain as an invasivity marker for uni- and multifocal lesions in the lower anogenital tract. Int. J. Gynecol. Cancer 12, 105–109 (2002).

    Article  PubMed  Google Scholar 

  34. Giannelli, G. & Antonaci, S. Biological and clinical relevance of Laminin-5 in cancer. Clin. Exp. Metastasis 18, 439–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Katayama, M., Sanzen, N., Funakoshi, A. & Sekiguchi, K. Laminin γ2-chain fragment in the circulation: a prognostic indicator of epithelial tumor invasion. Cancer Res. 63, 222–229 (2003).

    CAS  PubMed  Google Scholar 

  36. Shinto, E. et al. Prognostic implication of laminin-5 gamma 2 chain expression in the invasive front of colorectal cancers, disclosed by area-specific four-point tissue microarrays. Lab. Invest. 85, 257–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Savoia, P., Trusolino, L., Pepino, E. & Marchisio, P. C. Expression and topography of integrins and basement membrane proteins in epidermal carcinomas: basal but not squamous cell carcinomas display loss of alpha 6 beta 4 and BM-600/nicein. J. Invest. Dermatol. 101, 352–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Martin, K. J. et al. Down-regulation of laminin-5 in breast carcinoma cells. Mol. Med. 4, 602–613 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holler, E. Laminin isoform expression in breast tumors. Breast Cancer Res. 7, 166–167 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hao, J. et al. Investigation into the mechanism of the loss of laminin 5 (α3β3γ2) expression in prostate cancer. Am. J. Pathol. 158, 1129–135. (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Janes, S. M. & Watt, F. M. New roles for integrins in squamous-cell carcinoma. Nature Rev. Cancer 3, 175–183 (2006).

    Article  CAS  Google Scholar 

  42. Li, J. et al. Laminin-10 is crucial for hair morphogenesis. EMBO J. 22, 2400–2410 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan, H. & Khavari, P. A. Sonic hedgehog opposes epithelial cell cycle arrest. J. Cell Biol. 147, 71–76 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shaw, L. M. Tumor cell invasion assays. Methods Mol. Biol. 294, 97–105 (2005).

    PubMed  Google Scholar 

  45. Malinda, K. M. In vivo matrigel migration and angiogenesis assays. Methods Mol. Med. 78, 329–335 (2003).

    PubMed  Google Scholar 

  46. Mullen, P. The use of Matrigel to facilitate the establishment of human cancer cell lines as xenografts. Methods Mol. Med. 88, 287–292 (2004).

    CAS  PubMed  Google Scholar 

  47. Ekblom, P., Lonai, P. & Talts, J. F. Expression and biological role of laminin-1. Matrix Biol. 22, 35–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Rousselle, P., Lunstrum, G. P., Keene, D. R. & Burgeson, R. E. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J. Cell Biol. 114, 567–576 (1991). Characterization of the role of laminin 332 in epidermal adhesion.

    Article  CAS  PubMed  Google Scholar 

  49. Carter, W. G., Ryan, M. C. & Gahr, P. J. Epiligrin, a new cell adhesion ligand for integrin-3–1 in epithelial basement membranes. Cell 65, 559–610 (1991). Characterization of laminin 332 integrin specificity.

    Article  Google Scholar 

  50. Carter, W. G., Kaur, P., Gil, S. G., Gahr, P. J. & Wayner, E. A. Distinct functions for integrins alpha 3 beta 1 in focal adhesions and alpha 6 beta 4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes. J. Cell Biol. 111, 3141–3154 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Hood, J. D. & Cheresh, D. A. Role of integrins in cell invasion and migration. Nature Rev. Cancer 2, 91–100 (2002).

    Article  Google Scholar 

  52. Nievers, M. G., Schaapveld, R. Q. & Sonnenberg, A. Biology and function of hemidesmosomes. Matrix Biol. 18, 5–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Litjens, S. H., de Pereda, J. M. & Sonnenberg, A. Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol. 16, 376–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Geuijen, C. A. & Sonnenberg, A. Dynamics of the α6β4 Integrin in keratinocytes. Mol. Biol. Cell 13, 3845–3858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salo, S. et al. Laminin-5 promotes adhesion and migration of epithelial cells: identification of a migration-related element in the γ2 chain gene (LAMC2) with activity in transgenic mice. Matrix Biol. 18, 197–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G. & Quaranta, V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277, 225–228 (1997). Shows the association between laminin 332 processing and carcinoma cell migration.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, K. & Kramer, R. H. Laminin 5 deposition promotes keratinocyte motility. Exp. Cell Res. 227, 309–322 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Miyazaki, K., Kikkawa, Y., Nakamura, A., Yasumitsu, H. & Umeda, M. A large cell-adhesive scatter factor secreted by human gastric carcinoma cells. Proc. Natl Acad. Sci. USA 90, 11767–1171 (1993). Demonstration of the role of laminin 332 in tumour-cell migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kariya, Y. & Miyazaki, K. The basement membrane protein laminin-5 acts as a soluble cell motility factor. Exp. Cell Res. 297, 508–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Nguyen, B. P., Gil, S. G. & Carter, W. G. Deposition of laminin 5 by keratinocytes regulates integrin adhesion and signaling. J. Biol. Chem. 275, 31896–31907 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Nguyen, B. P., Ren, X. D., Schwartz, M. A. & Carter, W. G. Ligation of integrin α3β1 by laminin 5 at the wound edge activates Rho-dependent adhesion of leading keratinocytes on collagen. J. Biol. Chem. 276, 43860–43870 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Zhou, H. & Kramer, R. H. Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J. Biol. Chem. 280, 10624–10635 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Russell, A. J. et al. Alpha 6 beta 4 integrin regulates keratinocyte chemotaxis through differential GTPase activation and antagonism of alpha 3 beta 1 integrin. J. Cell Sci. 116, 3543–3556 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Pullar, C. E. et al. β4 integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol. Biol. Cell 17, 4925–4935 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sehgal, B. U. et al. Integrin β4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J. Biol. Chem. 46, 35487–35498 (2006).

    Article  CAS  Google Scholar 

  66. Zahir, N. et al. Autocrine laminin-5 ligates alpha6beta4 integrin and activates RAC and NFκB to mediate anchorage-independent survival of mammary tumors. J. Cell Biol. 163, 1397–1407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hamelers, I. H. et al. The Rac activator Tiam1 is required for α3β1-mediated laminin-5 deposition, cell spreading, and cell migration. J. Cell Biol. 171, 871–881 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malliri, A. et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417, 867–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Danen, E. H. et al. Integrins control motile strategy through a Rho-cofilin pathway. J. Cell Biol. 169, 515–526 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marinkovich, M. P., Lunstrum, G. P. & Burgeson, R. E. The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J. Biol. Chem. 267, 17900–17906 (1992). Characterization of the proteolytic processing of laminin 332.

    CAS  PubMed  Google Scholar 

  71. Amano, S. et al. Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 g 2 chain. J. Biol. Chem. 275, 22728–22735 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Gerecke, D. R., Gordon, M. K., Wagman, W. W., Champliaud, M. F. & Burgeson, R. E. in Extracellular matrix assembly and structure (eds Mecham, R. P., Birk, D. E. & Yurchenko, P. D.) 417–439 (Academic Press, San Diego, USA, 1994).

    Book  Google Scholar 

  73. Schenk, S. et al. Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J. Cell Biol. 161, 197–209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Decline, F. & Rousselle, P. Keratinocyte migration requires alpha2beta1 integrin-mediated interaction with the laminin 5 γ2 chain. J. Cell Sci. 114, 811–823 (2001).

    CAS  PubMed  Google Scholar 

  75. Gagnoux-Palacios, L. et al. The short arm of the laminin γ2 chain plays a pivotal role in the incorporation of laminin 5 into the extracellular matrix and in cell adhesion. J. Cell Biol. 153, 835–850. (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sigle, R. O. et al. Globular domains 4/5 of the laminin α3 chain mediate deposition of precursor laminin 5. J. Cell Sci. 117, 4481–4494 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Dajee, M. et al. NFκB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003). Demonstration of the requirement for laminin 332 and α6β4 integrin in human SCC tumours.

    Article  CAS  PubMed  Google Scholar 

  78. Waterman, E. A. et al. A laminin-collagen complex drives human epidermal carcinogenesis through phosphoinositol-3 kinase activation. Cancer Res. (in the press 2007).

  79. Nakashima, Y., Kariya, Y., Yasuda, C. & Miyazaki, K. Regulation of cell adhesion and type VII collagen binding by the β3 chain short arm of laminin-5: effect of its proteolytic cleavage. J. Biochem. (Tokyo) 138, 539–552 (2005).

    Article  CAS  Google Scholar 

  80. McGrath, J. A., Schofield, O. M., Mayou, B. J., McKee, P. H. & Eady, R. A. Epidermolysis bullosa complicated by squamous cell carcinoma: report of 10 cases. J. Cut. Pathol. 19, 116–123 (1992).

    Article  CAS  Google Scholar 

  81. Newman, C., Wagner, R. F. Jr., Tyring, S. K. & Spigel, G. T. Squamous cell carcinoma secondary to recessive dystrophic epidermolysis bullosa. A report of 4 patients with 17 primary cutaneous alignancies. J. Dermatol. Surg. Oncol. 18, 301–305 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Ortiz-Urda, S. et al. Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science 307, 1773–1776 (2005). Demonstration of collagen VII requirement in human SCC tumours.

    Article  CAS  PubMed  Google Scholar 

  83. Guo, W. et al. β4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Trusolino, L., Bertotti, A. & Comoglio, P. M. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell 5, 643–654 (2001).

    Article  Google Scholar 

  85. Okamoto, O. et al. Normal human keratinocytes bind to the α3LG4/5 domain of unprocessed laminin-5 through the receptor syndecan-1. J. Biol. Chem. 278, 44168–44177 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Tsubota, Y. et al. Isolation and activity of proteolytic fragment of laminin-5 α3 chain. Biochem. Biophys. Res. Commun. 278, 614–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Veitch, D. P. et al. Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin. J. Biol. Chem. 278, 15661–15668 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Hintermann, E. & Quaranta, V. Epithelial cell motility on laminin-5: regulation by matrix assembly, proteolysis, integrins and erbB receptors. Matrix Biol. 23, 75–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Marinkovich, M. P., Keene, D. R., Rimberg, C. S. & Burgeson, R. E. Cellular origin of the dermal-epidermal basement membrane. Dev. Dyn. 197, 255–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Timpl, R. et al. Laminin-a glycoprotein from basement membranes. J. Biol. Chem. 254, 9933–9937 (1979).

    CAS  PubMed  Google Scholar 

  91. Takagi, J., Yang, Y., Liu, J. H., Wang, J. H. & Springer, T. A. Complex between nidogen and laminin fragments reveals a paradigmatic β-propeller interface. Nature 424, 969–974 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Cheng, Y. S., Champliaud, M. F., Burgeson, R. E., Marinkovich, M. P. & Yurchenco, P. D. Self-assembly of laminin isoforms. J. Biol. Chem. 272, 31525–31532 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Champliaud, M. F. et al. Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J. Cell Biol. 132, 1189–1198 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Rousselle, P. et al. Laminin 5 binds the NC-1 domain of type VII collagen. J. Cell Biol. 138, 719–728 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, M. et al. Interactions of the amino-terminal noncollagenous (NC1) domain of type VII collagen with extracellular matrix components. J. Biol. Chem. 272, 14516–14522 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Koshikawa, N., Giannelli, G., Cirulli, V., Miyazaki, K. & Quaranta, V. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J. Cell Biol. 148, 615–624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goldfinger, L. E., Stack, M. S. & Jones, J. C. Processing of laminin-5 and its functional consequences: role of plasmin and tissue-type plasminogen activator. J. Cell Biol. 141, 255–265 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Timpl, R. et al. Structure and function of laminin LG modules. Matrix Biol. 19, 309–317. (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Sung, U., O'Rear, J. J. & Yurchenco, P. D. Localization of heparin binding activity in recombinant laminin G domain. Eur. J. Biochem. 250, 138–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Henry, M. D. & Campbell, K. P. A role for dystroglycan in basement membrane assembly. Cell 95, 859–870 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Geerts, D. et al. Binding of integrin α6β4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding. J. Cell Biol. 147, 417–434 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nievers, M. G., Kuikman, I., Geerts, D., Leigh, I. M. & Sonnenberg, A. Formation of hemidesmosome-like structures in the absence of ligand binding by the α6β4 integrin requires binding of HD1/plectin to the cytoplasmic domain of the β4 integrin subunit. J. Cell Sci. 113, 963–973 (2000).

    CAS  PubMed  Google Scholar 

  104. Sterk, L. M. et al. The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin α6β4 and may regulate the spatial organization of hemidesmosomes. J. Cell Biol. 149, 969–982 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sterk, L. M. et al. Association of the tetraspanin CD151 with the laminin-binding integrins α3β1, α6β1, α6β4 and α7β1 in cells in culture and in vivo. J. Cell Sci. 115, 1161–1173 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Veterans Affairs Office of Research and Development, and by the US National Institutes of Health and National Institute of Arthritis and Musculoskeletal and Skin Diseases.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

SCC

FURTHER INFORMATION

Peter Marinkovich's laboratory homepage

Glossary

Mohs' surgery

A tissue-sparing technique for complete excision of cutaneous SCC tumours, which uses frozen sections of marked excisional tissue boundries to ascertain complete tumour clearance.

Junctional epidermolysis bullosa

A group of inherited bullous disorders caused by gene mutations coding for proteins such as laminin 332, which are associated with the lamina lucida and lamina densa regions of the dermal–epidermal basement membrane.

Integrins

Integrins are transmembrane heterodimeric BMZ receptors consisting of and subunits that comprise a family of 20 currently identified members. Individual members of the integrin family have specific BMZ-recognition profiles and often distinct patterns of signal transduction when activated by ligand binding.

Matrigel

A commercially available basement membrane extract derived from the murine Engelbreth-Holm-Swarm (EHS) tumour. Matrigel primarily contains the proteins laminin 111, type IV collagen, nidogen and perlecan.

Focal adhesion

A structure that provides dynamic cell adhesion in vivo, which involves integrin-mediated binding to the extracellular matrix and connections to the actin cytoskeleton.

Stable anchoring contact

A structure that provides stable cell adhesion in vivo consisting of an assembly of hemidesmosomal components.

Hemidesmosomes

Specialized condensations of basal keratinocyte plasma membrane that contain a number of specialized basement membrane components. These structures provide additional stable adhesion in the face of external disruptive forces.

Keratinocytes

Specialized epithelial cells that make up the stratified squamous epithelium of skin and mucosal tissues.

Galvanotaxis

The responsive movement of cells along the direction of an electrical field.

Recessive dystrophic epidermolysis bullosa

An inherited bullous disorder caused by COL7A1 gene mutations, and a deficiency of collagen VII.

Astacin family

A group of zinc endopeptidases named after the digestive enzyme astacin isolated from the stomach-like cardia of the freshwater crayfish Astacis astacus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinkovich, M. Laminin 332 in squamous-cell carcinoma. Nat Rev Cancer 7, 370–380 (2007). https://doi.org/10.1038/nrc2089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing