Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

C/EBPα mutations in acute myeloid leukaemias

Key Points

  • CCAAT/enhancer-binding protein-α (C/EBPα) is a transcription factor that coordinates cellular differentiation with growth arrest.

  • Patients with acute myeloid leukaemia carry specific combinations of point mutations in the gene encoding C/EBPα.

  • C/EBPα represses the E2F transcription factor. Patient-derived C/EBPα mutants generally loose the ability to bind DNA or to repress E2F activity.

  • C/EBPα expression inhibits the malignant potential of myeloid leukaemia cells by inducing their differentiation.

  • E2F repression and DNA binding by C/EBPα are required for the C/EBP-induced differentiation of leukaemia cells.

  • Reconstituting C/EBPα-mediated E2F repression has the potential to revert leukaemogenesis in vivo.

Abstract

Specific mutations in the gene that encodes the multifunctional transcription factor C/EBPα are frequently associated with acute myeloid leukaemias. Are only a specific subset of the functions of C/EBPα therefore involved in leukaemogenesis?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of the C/EBPα p42/p30 ratio.
Figure 2: Distribution of C/EBPα mutations in acute myeloid leukaemia cells.
Figure 3: Distribution of C/EBPα functions.
Figure 4: Mutant forms of C/EBPα and acute myeloid leukaemia.

Similar content being viewed by others

References

  1. Tenen, D. G. Disruption of differentiation in human cancer: AML shows the way. Nature Rev. Cancer 3, 89–101 (2003).

    Article  CAS  Google Scholar 

  2. Wang, N. D. et al. Impaired energy homeostasis in C/EBPα knockout mice. Science 269, 1108–1112 (1995). This paper demonstrates the requirement for C/EBPα during white-fat adipogenesis.

    Article  CAS  Google Scholar 

  3. Zhang, D. E. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl Acad. Sci. USA 94, 569–574 (1997). This paper provided the first demonstration of a block in granulopoiesis in the absence of the C/EBPα protein.

    Article  CAS  Google Scholar 

  4. Freytag, S. O., Paielli, D. L. & Gilbert, J. D. Ectopic expression of the CCAAT/enhancer-binding protein α promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 8, 1654–1663 (1994).

    Article  CAS  Google Scholar 

  5. Radomska, H. S. et al. CCAAT/enhancer binding protein α is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol. Cell. Biol. 18, 4301–4314 (1998).

    Article  CAS  Google Scholar 

  6. Nerlov, C., McNagny, K. M., Doderlein, G., Kowenz-Leutz, E. & Graf, T. Distinct C/EBP functions are required for eosinophil lineage commitment and maturation. Genes Dev. 12, 2413–2423 (1998).

    Article  CAS  Google Scholar 

  7. Lin, F. T., MacDougald, O. A., Diehl, A. M. & Lane, M. D. A 30-kDa alternative translation product of the CCAAT/enhancer binding protein α message: transcriptional activator lacking antimitotic activity. Proc. Natl Acad. Sci. USA 90, 9606–9610 (1993).

    Article  CAS  Google Scholar 

  8. Calkhoven, C. F., Muller, C. & Leutz, A. Translational control of C/EBPα and C/EBPβ isoform expression. Genes Dev. 14, 1920–1932 (2000). An elegant demonstration of how translational control can alter the function of a transcription factor by selectively including or excluding functional domains in response to extracellular signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenwald, I. B., Rhoads, D. B., Callanan, L. D., Isselbacher, K. J. & Schmidt, E. V. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2α in response to growth induction by c-myc. Proc. Natl Acad. Sci. USA 90, 6175–6178 (1993).

    Article  CAS  Google Scholar 

  10. D'Alo', F. et al. The amino terminal and E2F interaction domains are critical for C/EBPα-mediated induction of granulopoietic development of hematopoietic cells. Blood 102, 3163–3171 (2003).

    Article  CAS  Google Scholar 

  11. Lazaris-Karatzas, A., Montine, K. S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544–547 (1990).

    Article  CAS  Google Scholar 

  12. Pabst, T. et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. Nature Genet. 27, 263–270 (2001). The first demonstration of mutations in a lineage-specific transcriptional regulator in patients with AML.

    Article  CAS  Google Scholar 

  13. Gombart, A. F. et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein α in myelodysplastic syndromes and acute myeloid leukemias. Blood 99, 1332–1340 (2002).

    Article  CAS  Google Scholar 

  14. Preudhomme, C. et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 100, 2717–2723 (2002).

    Article  CAS  Google Scholar 

  15. Van Waalwijk Van Doorn-Khosrovani, S. B. et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol. J. 4, 31–40 (2003).

    Article  CAS  Google Scholar 

  16. Kaeferstein, A. et al. The emergence of a C/EBPα mutation in the clonal evolution of MDS towards secondary AML. Leukemia 17, 343–349 (2003).

    Article  CAS  Google Scholar 

  17. Snaddon, J. et al. Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosom. Cancer 37, 72–78 (2003).

    Article  CAS  Google Scholar 

  18. Asou, H. et al. Establishment of the acute myeloid leukemia cell line Kasumi-6 from a patient with a dominant-negative mutation in the DNA-binding region of the C/EBPα gene. Genes Chromosom. Cancer 36, 167–174 (2003).

    Article  CAS  Google Scholar 

  19. Pabst, T. et al. AML1–ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia. Nature Med. 7, 444–451 (2001).

    Article  CAS  Google Scholar 

  20. Cilloni, D. et al. Down-modulation of the C/EBPα transcription factor in core binding factor acute myeloid leukemias. Blood 102, 2705–2706 (2003).

    Article  CAS  Google Scholar 

  21. Perrotti, D. et al. BCR–ABL suppresses C/EBPα expression through inhibitory action of hnRNP E2. Nature Genet. 30, 48–58 (2002).

    Article  CAS  Google Scholar 

  22. Friedman, A. D., Landschulz, W. H. & McKnight, S. L. CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells. Genes Dev. 3, 1314–1363 (1989).

    Article  CAS  Google Scholar 

  23. Christy, R. J. et al. Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev. 3, 1323–1335 (1989).

    Article  CAS  Google Scholar 

  24. Tenen, D. G., Hromas, R., Licht, J. D. & Zhang, D. E. Transcription factors, normal myeloid development, and leukemia. Blood 90, 489–519 (1997).

    CAS  Google Scholar 

  25. McNagny, K. M., Sieweke, M. H., Doderlein, G., Graf, T. & Nerlov, C. Regulation of eosinophil-specific gene expression by a C/EBP–Ets complex and GATA-1. EMBO J. 17, 3669–3680 (1998).

    Article  CAS  Google Scholar 

  26. Nerlov, C. & Ziff, E. B. CCAAT/enhancer binding protein-α amino acid motifs with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and mammalian cells. EMBO J. 14, 4318–4328 (1995).

    Article  CAS  Google Scholar 

  27. Kovacs, K. A., Steinmann, M., Magistretti, P. J., Halfon, O. & Cardinaux, J. R. CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J. Biol. Chem. 278, 36959–36965 (2003).

    Article  CAS  Google Scholar 

  28. Schwartz, C. et al. Recruitment of p300 by C/EBPβ triggers phosphorylation of p300 and modulates coactivator activity. EMBO J. 22, 882–892 (2003).

    Article  CAS  Google Scholar 

  29. Pedersen, T. A., Kowenz-Leutz, E., Leutz, A. & Nerlov, C. Cooperation between C/EBPα TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes Dev. 15, 3208–3216 (2001).

    Article  CAS  Google Scholar 

  30. Zhang, D. E. et al. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF α2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol. Cell. Biol. 16, 1231–1240 (1996).

    Article  CAS  Google Scholar 

  31. Yamaguchi, Y., Nishio, H., Kishi, K., Ackerman, S. J. & Suda, T. C. EBPβ and GATA-1 synergistically regulate activity of the eosinophil granule major basic protein promoter: implication for C/EBPβ activity in eosinophil gene expression. Blood 94, 1429–1439 (1999).

    CAS  PubMed  Google Scholar 

  32. Reddy, V. A. et al. Granulocyte inducer C/EBPα inactivates the myeloid master regulator PU. 1: possible role in lineage commitment decisions. Blood 100, 483–490 (2002).

    Article  CAS  Google Scholar 

  33. Umek, R. M., Friedman, A. D. & McKnight, S. L. CCAAT-enhancer binding protein: a component of a differentiation switch. Science 251, 288–292 (1991).

    Article  CAS  Google Scholar 

  34. Muller, C. et al. Separation of C/EBPα-mediated proliferation arrest and differentiation pathways. Proc. Natl Acad. Sci. USA 96, 7276–7281 (1999).

    Article  CAS  Google Scholar 

  35. Timchenko, N. A. et al. CCAAT/enhancer binding protein α regulates p21 protein and hepatocyte proliferation in newborn mice. Mol. Cell. Biol. 17, 7353–7361 (1997).

    Article  CAS  Google Scholar 

  36. Wang, H. et al. C/EBPα arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell 8, 817–828 (2001).

    Article  CAS  Google Scholar 

  37. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  Google Scholar 

  38. Slomiany, B. A., D'Arigo, K. L., Kelly, M. M. & Kurtz, D. T. C/EBPα inhibits cell growth via direct repression of E2F-DP-mediated transcription. Mol. Cell. Biol. 20, 5986–5997 (2000). The first demonstration of the capacity of C/EBPα to repress E2F-dependent transcription.

    Article  CAS  Google Scholar 

  39. Porse, B. T. et al. E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell 107, 247–258 (2001). An in vivo demonstration of the coupling between cell-cycle control and terminal differentiation by C/EBPα.

    Article  CAS  Google Scholar 

  40. Johansen, L. M. et al. c-Myc is a critical target for c/EBPα in granulopoiesis. Mol. Cell. Biol. 21, 3789–3806 (2001).

    Article  CAS  Google Scholar 

  41. Hendricks-Taylor, L. R. & Darlington, G. J. Inhibition of cell proliferation by C/EBPα occurs in many cell types, does not require the presence of p53 or Rb, and is not affected by large T-antigen. Nucleic Acids Res. 23, 4726–4733 (1995).

    Article  CAS  Google Scholar 

  42. Wang, Q. F., Cleaves, R., Kummalue, T., Nerlov, C. & Friedman, A. D. Cell cycle inhibition mediated by the outer surface of the C/EBPα basic region is required but not sufficient for granulopoiesis. Oncogene 22, 2548–2557 (2003).

    Article  CAS  Google Scholar 

  43. Muller, C., Calkhoven, C. F., Sha, X. & Leutz, A. The CCAAT enhancer-binding protein α (C/EBPα) requires a SWI/SNF complex for proliferation arrest. J. Biol. Chem. 279, 7353–7358 (2004).

    Article  Google Scholar 

  44. Zhang, H. S. & Dean, D. C. Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene 20, 3134–3138 (2001).

    Article  CAS  Google Scholar 

  45. Strom, D. K., Cleveland, J. L., Chellappan, S., Nip, J. & Hiebert, S. W. E2F-1 and E2F-3 are functionally distinct in their ability to promote myeloid cell cycle progression and block granulocyte differentiation. Cell Growth Differ. 9, 59–69 (1998).

    CAS  PubMed  Google Scholar 

  46. Bjerregaard, M. D., Jurlander, J., Klausen, P., Borregaard, N. & Cowland, J. B. The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood 101, 4322–4332 (2003).

    Article  CAS  Google Scholar 

  47. Duprez, E., Wagner, K., Koch, H. & Tenen, D. G. C/EBPβ: a major PML–RARA-responsive gene in retinoic acid-induced differentiation of APL cells. EMBO J. 22, 5806–5816 (2003).

    Article  CAS  Google Scholar 

  48. Gery, S., Gombart, A. F., Fung, Y. K. & Koeffler, H. P. C/EBPε interacts with retinoblastoma and E2F1 during granulopoiesis. Blood 103, 828–835 (2003).

    Article  Google Scholar 

  49. Verbeek, W., Wachter, M., Lekstrom-Himes, J. & Koeffler, H. P. C/EBPε−/− mice: increased rate of myeloid proliferation and apoptosis. Leukemia 15, 103–111 (2001).

    Article  CAS  Google Scholar 

  50. Jones, L. C. et al. Expression of C/EBPβ from the C/ebpα gene locus is sufficient for normal hematopoiesis in vivo. Blood 99, 2032–2036 (2002).

    Article  CAS  Google Scholar 

  51. Truong, B. T. et al. CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood 101, 1141–1148 (2003).

    Article  CAS  Google Scholar 

  52. Timchenko, N. A., Wilde, M., Nakanishi, M., Smith, J. R. & Darlington, G. J. CCAAT/enhancer-binding protein α (C/EBPα) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev. 10, 804–815 (1996).

    Article  CAS  Google Scholar 

  53. Timchenko, N. A., Wilde, M. & Darlington, G. J. C/EBPα regulates formation of S-phase-specific E2F–107 complexes in livers of newborn mice. Mol. Cell. Biol. 19, 2936–2945 (1999).

    Article  CAS  Google Scholar 

  54. Iakova, P., Awad, S. S. & Timchenko, N. A. Aging reduces proliferative capacities of liver by switching pathways of C/EBPα growth arrest. Cell 113, 495–506 (2003).

    Article  CAS  Google Scholar 

  55. Ross, S. E., Erickson, R. L., Hemati, N. & MacDougald, O. A. Glycogen synthase kinase 3 is an insulin-regulated C/EBPα kinase. Mol. Cell. Biol. 19, 8433–8441 (1999).

    Article  CAS  Google Scholar 

  56. Behre, G. et al. Ras signaling enhances the activity of C/EBPα to induce granulocytic differentiation by phosphorylation of serine 248. J. Biol. Chem. 277, 26293–26299 (2002).

    Article  CAS  Google Scholar 

  57. Weinstein, H. & Griffin, J. D. in Blood, Principles and Practice of Hematology (eds Handin, R. I., Lux, S. E. & Stossel, T. P.) 543–574 (J.B. Lippincott Company, Philadelphia, USA, 1995).

    Google Scholar 

Download references

Acknowledgements

The author thanks B. Porse, A. Leutz and D. Tenen for helpful discussions, and present as well as former members of the Nerlov lab for their contributions to this article.

Correction: The DOI number given for this article in the May 2004 print issue of Nature Reviews Cancer was wrong. The correct DOI number is: doi:10.1038/nrc1363.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

acute myeloid leukaemia

LocusLink

C/EBPα

C/EBPβ

C/EBPε

CBFβ

CBP

c-MYC

eIF2α

eIF4E

ETS1

GATA1

p300

PU.1

RB

RUNX1

TBP

TFIIB

Glossary

BASELINE GRANULOPOIESIS

Normal physiological granulopoiesis, in which a myeloblast matures into a fully differentiated granulocyte, typically takes about 11–12 days. This is opposed to the accelerated granulopoiesis that occurs under conditions of stress, such as in the case of severe infection, when granulocytes are produced much more rapidly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nerlov, C. C/EBPα mutations in acute myeloid leukaemias. Nat Rev Cancer 4, 394–400 (2004). https://doi.org/10.1038/nrc1363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing