Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Searching for the elusive targets of farnesyltransferase inhibitors

Abstract

Farnesyltransferase (FTase) inhibitors (FTIs) were developed originally as anti-RAS compounds and novel target-based drugs for cancer treatment. The analyses of FTIs continue in the clinic, but the antitumour activity cannot be ascribed simply to inhibition of RAS. Although FTI action is due to inhibition of FTase, and RAS proteins are indeed substrates for this enzyme, the RAS proteins that are most frequently mutated in human cancers escape FTI inhibition. RHOB has been suggested as a target, but is this issue resolved or do the crucial targets of FTIs remain to be identified?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAS processing and association with the plasma membrane.
Figure 2: Farnesyltransferase inhibitors (FTIs) inhibit FTase modification of RAS and other proteins.
Figure 3: FTIs target the PI3K–AKT survival pathway to induce apoptosis.
Figure 4: Expected properties of farnesylated proteins involved in FTI-induced growth inhibition.
Figure 5: Small GTPase candidate targets of FTIs.

Similar content being viewed by others

References

  1. Shields, J. M., Pruitt, K., McFall, A., Shaub, A. & Der, C. J. Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol. 10, 147–154 (2000).

    CAS  PubMed  Google Scholar 

  2. Sahai, E. & Marshall, C. J. RHO-GTPases and cancer. Nature Rev. Cancer 2, 133–142 (2002).

    Google Scholar 

  3. Ellis, C. A. et al. Rig is a novel Ras-related protein and potential neural tumor suppressor. Proc. Natl Acad. Sci. USA 99, 9876–9881 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Finlin, B. S. et al. RERG is a novel ras-related, estrogen-regulated and growth-inhibitory gene in breast cancer. J. Biol. Chem. 276, 42259–42267 (2001).

    CAS  PubMed  Google Scholar 

  5. Hamaguchi, M. et al. DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc. Natl Acad. Sci. USA 99, 13647–13652 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu, Y. et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc. Natl Acad. Sci. USA 96, 214–219 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cox, A. D. & Der, C. J. Ras family signaling: therapeutic targeting. Cancer Biol. Ther. 1, 599–606 (2002).

    CAS  PubMed  Google Scholar 

  8. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    CAS  Google Scholar 

  9. Barbacid, M. Ras genes. Annu. Rev. Biochem. 56, 779–827 (1987).

    CAS  PubMed  Google Scholar 

  10. Sebti, S. M. & Hamilton, A. D. Anticancer activity of farnesyltransferase and geranylgeranyltransferase I inhibitors: prospects for drug development. Exp. Opin. Invest. Drugs 6, 1711–1714 (1997).

    CAS  Google Scholar 

  11. Sebti, S. M. & Hamilton, A. D. (eds.) Farnesyltransferase Inhibitors in Cancer Therapy 197–219 (Humana Press, Totowa, New Jersey, 2000).

    Google Scholar 

  12. Cox, A. D. & Der, C. J. Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim. Biophys. Acta 1333, F51–F71 (1997).

    CAS  PubMed  Google Scholar 

  13. Gibbs, J. B. & Oliff, A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu. Rev. Pharmacol. Toxicol. 37, 143–166 (1997).

    CAS  PubMed  Google Scholar 

  14. Sebti, S. M. & Hamilton, A. D. Inhibition of Ras prenylation: a novel approach to cancer chemotherapy. Pharmacol. Ther. 74, 103–114 (1997).

    CAS  PubMed  Google Scholar 

  15. Reiss, Y., Goldstein, J. L., Seabra, M. C., Casey, P. J. & Brown, M. S. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 62, 81–88 (1990).

    CAS  PubMed  Google Scholar 

  16. Sun, J. et al. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine. Cancer Res. 59, 4919–4926 (1999).

    CAS  PubMed  Google Scholar 

  17. James, G. L., Goldstein, J. L. & Brown, M. S. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J. Biol. Chem. 270, 6221–6226 (1995).

    CAS  PubMed  Google Scholar 

  18. Whyte, D. B. et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14459–14464 (1997).

    CAS  PubMed  Google Scholar 

  19. Rowell, C. A., Kowalczyk, J. J., Lewis, M. D. & Garcia, A. M. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J. Biol. Chem. 272, 14093–14097 (1997).

    CAS  PubMed  Google Scholar 

  20. Lerner, E. C. et al. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15, 1283–1288 (1997).

    CAS  PubMed  Google Scholar 

  21. Sun, J., Qian, Y., Hamilton, A. D. & Sebti, S. M. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 16, 1467–1473 (1998).

    CAS  PubMed  Google Scholar 

  22. Lerner, E. C. et al. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes. J. Biol. Chem. 270, 26802–26806 (1995).

    CAS  PubMed  Google Scholar 

  23. Bredel, M., Pollack, I. F., Freund, J. M., Hamilton, A. D. & Sebti, S. M. Inhibition of Ras and related G-proteins as a therapeutic strategy for blocking malignant glioma growth. Neurosurgery 43, 124–131 (1998).

    CAS  PubMed  Google Scholar 

  24. Pollack, I. F., Bredel, M., Erff, M., Hamilton, A. D. & Sebti, S. M. Inhibition of Ras and related guanosine triphosphate-dependent proteins as a therapeutic strategy for blocking malignant glioma growth: II—preclinical studies in a nude mouse model. Neurosurgery 45, 1208–1214 (1999).

    CAS  PubMed  Google Scholar 

  25. Lantry, L. E. et al. Effect of farnesyltransferase inhibitor FTI-276 on established lung adenomas from A/J mice induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 21, 113–116 (2000).

    CAS  PubMed  Google Scholar 

  26. Zhang, Z. et al. Farnesyltransferase inhibitors are potent lung cancer chemopreventive agents in A/J mice with a dominant-negative p53 and/or heterozygous deletion of Ink4a/Arf. Oncogene 22, 6257–6265 (2003).

    CAS  PubMed  Google Scholar 

  27. Gibbs, J. B. et al. Farnesyltransferase Inhibitors in Cancer Therapy (ed. Hamilton, S. M.) 65–70 (Humana Press, Totowa, New Jersey, 2000).

    Google Scholar 

  28. Sun, J. et al. Geranylgeranyltransferase I inhibitor, GGTI-2154, induces breast carcinoma apoptosis and tumor regression in H-Ras transgenic mice. Cancer Res. (in the press).

  29. Omer, C. A. et al. Mouse mammary tumor virus-Ki-rasB transgenic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl:protein transferase inhibitor. Cancer Res. 2680–2688 (2000).

  30. Vogt, A., Sun, J., Qian, Y., Hamilton, A. D. & Sebti, S. M. The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21WAF1/CIP1/SDI1 in a p53-independent manner. J. Biol. Chem. 272, 27224–27229 (1997).

    CAS  PubMed  Google Scholar 

  31. Ashar, H. R. et al. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J. Biol. Chem. 275, 30451–30457 (2000).

    CAS  PubMed  Google Scholar 

  32. Crespo, N. C., Ohkanda, J., Yen, T. J., Hamilton, A. D. & Sebti, S. M. The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J. Biol. Chem. 276, 16161–16167 (2001).

    CAS  PubMed  Google Scholar 

  33. Crespo, N. C. et al. The farnesyltransferase inhibitor, FTI-2153, inhibits bipolar spindle formation during mitosis independently of transformation and Ras and p53 mutation status. Cell Death Differ. 9, 702–709 (2002).

    CAS  PubMed  Google Scholar 

  34. Hussein, D. & Taylor, S. S. Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis. J. Cell Sci. 115, 3403–3414 (2002).

    CAS  PubMed  Google Scholar 

  35. Suzuki, N., Urano, J. & Tamanoi, F. Farnesyltransferase inhibitors induce cytochrome c release and caspase 3 activation preferentially in transformed cells. Proc. Natl Acad. Sci. USA 95, 15356–15361 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lebowitz, P. F., Sakamuro, D. & Prendergast, G. C. Farnesyl transferase inhibitors induce apoptosis of Ras-transformed cells denied substratum attachment. Cancer Res. 57, 708–713 (1997).

    CAS  PubMed  Google Scholar 

  37. Jiang, K. et al. The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol. Cell. Biol. 20, 139–148 (2000).

    PubMed Central  PubMed  Google Scholar 

  38. Liu, A. & Prendergast, G. C. Geranylgeranylated RhoB is sufficient to mediate tissue-specific suppression of Akt kinase activity by farnesyltransferase inhibitors. FEBS Lett. 481, 205–208 (2000).

    CAS  PubMed  Google Scholar 

  39. Du, W. & Prendergast, G. C. Geranylgeranylated RhoB mediates suppression of human tumor cell growth by farnesyltransferase inhibitors. Cancer Res. 59, 5492–5496 (1999).

    CAS  PubMed  Google Scholar 

  40. Kohl, N. E. et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 260, 1934–1937 (1993).

    CAS  PubMed  Google Scholar 

  41. James, G. L. et al. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 260, 1937–1942 (1993).

    CAS  PubMed  Google Scholar 

  42. Sepp-Lorenzino, L. et al. A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and-independent growth of human tumor cell lines. Cancer Res. 55, 5302–5309 (1995).

    CAS  PubMed  Google Scholar 

  43. Fiordalisi, J. J. et al. High affinity for farnesyl transferase and alternative prenylation contribute individually to K-ras4B resistance to farnesyl transferase inhibitors. J. Biol. Chem. 278, 41718–41727 (2003).

    CAS  PubMed  Google Scholar 

  44. Voice, J. K., Klemke, R. L., Le, A. & Jackson, J. H. Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J. Biol. Chem. 274, 17164–17170 (1999).

    CAS  PubMed  Google Scholar 

  45. Yan, J., Roy, S., Apolloni, A., Lane, A. & Hancock, J. F. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 273, 24052–24056 (1998).

    CAS  PubMed  Google Scholar 

  46. Armstrong, S. A., Hannah, V. C., Goldstein, J. L. & Brown, M. S. CAAX geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB. J. Biol. Chem. 270, 7864–7868 (1995).

    CAS  PubMed  Google Scholar 

  47. Lebowitz, P. F., Casey, P. J., Prendergast, G. C. & Thissen, J. A. Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J. Biol. Chem. 272, 15591–15594 (1997).

    CAS  PubMed  Google Scholar 

  48. Du, W., Liu, A. & Prendergast, G. C. Activation of the PI3K-AKT pathway masks the proapoptotic effects of farnesyltransferase inhibitors. Cancer Res. 59, 4208–4212 (1999).

    CAS  PubMed  Google Scholar 

  49. Liu, A., Du, W., Liu, J. P., Jessell, T. M. & Prendergast, G. C. RhoB alteration is necessary for apoptotic and antineoplastic responses to farnesyltransferase inhibitors. Mol. Cell. Biol. 20, 6105–6113 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu, A. X., Rane, N., Liu, J. P. & Prendergast, G. C. RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol. Cell. Biol. 21, 6906–6912 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Chen, Z. et al. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J. Biol. Chem. 275, 17974–17978 (2000).

    CAS  PubMed  Google Scholar 

  52. Baron, R. et al. RhoB prenylation is driven by the three carboxyl-terminal amino acids of the protein: evidenced in vivo by an anti-farnesyl cysteine antibody. Proc. Natl Acad. Sci. USA 97, 11626–11631 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Adnane, J., Muro-Cacho, C., Mathews, L., Sebti, S. M. & Munoz-Antonia, T. Suppression of rho B expression in invasive carcinoma from head and neck cancer patients. Clin. Cancer Res. 8, 2225–2232 (2002).

    CAS  PubMed  Google Scholar 

  54. Forget, M. A. et al. The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin. Exp. Metastasis 19, 9–15 (2002).

    CAS  PubMed  Google Scholar 

  55. Fritz, G., Brachetti, C., Bahlmann, F., Schmidt, M. & Kaina, B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br. J. Cancer 87, 635–644 ( 2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Hancock, J. F., Cadwallader, K., Paterson, H. & Marshall, C. J. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 10, 4033–4039 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Cox, A. D., Hisaka, M. M., Buss, J. E. & Der, C. J. Specific isoprenoid modification is required for function of normal, but not oncogenic, Ras protein. Mol. Cell. Biol. 12, 2606–2615 (1992).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Allal, C. et al. RhoA prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription. J. Biol. Chem. 275, 31001–31008 (2000).

    CAS  PubMed  Google Scholar 

  59. Solski, P. A., Helms, W., Keely, P. J., Su, L. & Der, C. J. RhoA biological activity is dependent on prenylation but independent of specific isoprenoid modification. Cell Growth Differ. 13, 363–373 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Rose, W. C. et al. Preclinical antitumor activity of BMS-214662, a highly apoptotic and novel farnesyltransferase inhibitor. Cancer Res. 61, 7507–7517 (2001).

    CAS  PubMed  Google Scholar 

  61. Alton, G., Cox, A. D., Toussaint, L. G. & Westwick, J. K. Functional proteomics analysis of GTPase signaling networks. Methods Enzymol. 332, 300–316 (2001).

    CAS  PubMed  Google Scholar 

  62. Cates, C. A. et al. Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Lett. 110, 49–55 (1996).

    CAS  PubMed  Google Scholar 

  63. Zeng, Q. et al. Prenylation-dependent association of protein-tyrosine phosphatases PRL-1,-2, and-3 with the plasma membrane and the early endosome. J. Biol. Chem. 275, 21444–21452 (2000).

    CAS  PubMed  Google Scholar 

  64. Zeng, Q. et al. PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res. 63, 2716–2722 (2003).

    CAS  PubMed  Google Scholar 

  65. Wang, Q., Holmes, D. I., Powell, S. M., Lu, Q. L. & Waxman, J. Analysis of stromal-epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Lett. 175, 63–69 (2002).

    CAS  PubMed  Google Scholar 

  66. Saha, S. et al. A phosphatase associated with metastasis of colorectal cancer. Science 294, 1343–1346 (2001).

    CAS  PubMed  Google Scholar 

  67. Guasch, R. M., Scambler, P., Jones, G. E. & Ridley, A. J. RhoE regulates actin cytoskeleton organization and cell migration. Mol. Cell. Biol. 18, 4761–4771 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Nobes, C. D. et al. A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J. Cell Biol. 141, 187–197 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Wennerberg, K. et al. Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr. Biol. 13, 1106–1115 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Riento, K., Guasch, R. M., Garg, R., Jin, B. & Ridley, A. J. RhoE binds to ROCK I and inhibits downstream signaling. Mol. Cell. Biol. 23, 4219–4229 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Hansen, S. H. et al. Induced expression of Rnd3 is associated with transformation of polarized epithelial cells by the Raf-MEK-extracellular signal-regulated kinase pathway. Mol. Cell. Biol. 20, 9364–9375 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Clark, G. J. et al. The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J. Biol. Chem. 272, 10608–10615 (1997).

    CAS  PubMed  Google Scholar 

  73. Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biol. 5, 566–571 (2003).

    CAS  PubMed  Google Scholar 

  74. Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nature Cell Biol. 5, 559–565 (2003).

    CAS  PubMed  Google Scholar 

  75. Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

    CAS  PubMed  Google Scholar 

  77. Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    CAS  PubMed  Google Scholar 

  78. Castro, A. F., Rebhun, J. F., Clark, G. G. & Quilliam, L. A. Rheb binds TSC2 and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J. Biol. Chem. 278, 32493–32496 (2003).

    CAS  PubMed  Google Scholar 

  79. Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biol. 5, 578–581 (2003).

    CAS  PubMed  Google Scholar 

  80. Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    CAS  PubMed  Google Scholar 

  81. Yang, W., Tabancay, A. P. Jr, Urano, J. & Tamanoi, F. Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Mol. Microbiol. 41, 1339–1347 (2001).

    CAS  PubMed  Google Scholar 

  82. Patel, P. H. et al. Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J. Cell Sci. 116, 3601–3610 (2003).

    CAS  PubMed  Google Scholar 

  83. Gromov, P. S., Madsen, P., Tomerup, N. & Celis, J. E. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. FEBS Lett. 377, 221–226 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

AKT2

APAF1

ARHI/NOEY2

BAD

BCL-XL

CDC42

CDKN2A

CENPE

CENPF

DBC2

ERBB1

ERBB2

HRAS

KRAS

NRAS

p53

PRL1

PRL2

PRL3

PTEN

RAC1

RAL

RAP

RERG

RHEB

RIG

RND3

TSC2

OMIM

tuberous sclerosis syndrome

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebti, S., Der, C. Searching for the elusive targets of farnesyltransferase inhibitors. Nat Rev Cancer 3, 945–951 (2003). https://doi.org/10.1038/nrc1234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing