Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sphingolipid metabolism in cancer signalling and therapy

Key Points

  • Sphingolipids are bioactive molecules that have key roles in the regulation of cancer cell signalling to control tumour suppression or survival. Ceramide is a bioeffector molecule that mediates cell death, whereas sphingosine-1-phosphate (S1P) induces tumour cell proliferation, resistance to chemotherapy, radiotherapy or immunotherapy and metastasis.

  • The metabolic network of sphingolipids provides regulatory nodes for controlling cancer growth and/or proliferation in response to cellular stress, including the activation of enzymes that generate the tumour suppressor ceramide and/or inhibit the conversion of ceramide to S1P or other complex sphingolipids that have pro-survival and/or anti-apoptotic function, such as sphingomyelin and glucosylceramide.

  • Induction of ceramide generation and/or accumulation mediates cancer cell death via apoptosis, necroptosis or mitophagy, which might be regulated by the distinct functions of de novo-generated endogenous ceramides with different fatty acyl chain lengths. Downstream mechanisms of ceramide in induction of cell death are regulated mainly by its subcellular localization, trafficking and lipid–protein binding between ceramide and target proteins such as phosphatase 2A inhibitor I2PP2A or microtubule-associated protein 1 light chain 3β (LC3B) in cancer cells.

  • The metabolic conversion of ceramide to S1P increases cancer cell survival via G protein-coupled S1P receptor (S1PR)-dependent or S1PR-independent oncogenic signalling. Systemic S1P mediates host–cancer cell communication to increase tumour metastasis, which involves the function of protein spinster homologue 2 (SPNS2) for S1P secretion from lymphoid endothelial cells and S1PR1-dependent or S1PR2-dependent signalling in cancer cells to induce migration and/or evade immune-cell-mediated cytotoxicity.

  • There are also receptor-independent roles of endogenous S1P; direct S1P–protein interactions, including with histone deacetylase 1 (HDAC1), HDAC2 and telomerase, regulate cancer cell growth and proliferation.

  • Targeting sphingolipid metabolism to activate pro-cell death ceramide signalling and/or inhibit pro-survival S1P signalling using genetic, molecular, immunological or pharmacological tools provides novel strategies for the development of new therapies — including immunotherapies — for various cancer types, some of which are under current evaluation in active clinical trials.

Abstract

Sphingolipids, including the two central bioactive lipids ceramide and sphingosine-1-phosphate (S1P), have opposing roles in regulating cancer cell death and survival, respectively, and there have been exciting developments in understanding how sphingolipid metabolism and signalling regulate these processes in response to anticancer therapy. Recent studies have provided mechanistic details of the roles of sphingolipids and their downstream targets in the regulation of tumour growth and response to chemotherapy, radiotherapy and/or immunotherapy using innovative molecular, genetic and pharmacological tools to target sphingolipid signalling nodes in cancer cells. For example, structure–function-based studies have provided innovative opportunities to develop mechanism-based anticancer therapeutic strategies to restore anti-proliferative ceramide signalling and/or inhibit pro-survival S1P–S1P receptor (S1PR) signalling. This Review summarizes how ceramide-induced cellular stress mediates cancer cell death through various mechanisms involving the induction of apoptosis, necroptosis and/or mitophagy. Moreover, the metabolism of ceramide for S1P biosynthesis, which is mediated by sphingosine kinase 1 and 2, and its role in influencing cancer cell growth, drug resistance and tumour metastasis through S1PR-dependent or receptor-independent signalling are highlighted. Finally, studies targeting enzymes involved in sphingolipid metabolism and/or signalling and their clinical implications for improving cancer therapeutics are also presented.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of sphingolipid metabolism and key enzymes.
Figure 2: Intracellular ceramide signalling in cancer cell death and tumour suppression.
Figure 3: Oncogenic S1P–S1PR1-5 signalling.
Figure 4: Receptor-independent intracellular S1P signalling.

Similar content being viewed by others

References

  1. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Hannun, Y. A. & Bell, R. M. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science 235, 670–674 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Dressler, K. A., Mathias, S. & Kolesnick, R. N. Tumor necrosis factor-α activates the sphingomyelin signal transduction pathway in a cell-free system. Science 255, 1715–1718 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Ogretmen, B. & Hannun, Y. A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer 4, 604–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, M. J. et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552–1555 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Pyne, N. J. & Pyne, S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 10, 489–503 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Morad, S. A. et al. Ceramide-antiestrogen nanoliposomal combinations — novel impact of hormonal therapy in hormone-insensitive breast cancer. Mol. Cancer Ther. 11, 2352–2361 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Venkataraman, K. et al. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J. Biol. Chem. 277, 35642–35649 (2002). This work provides biochemical details of how CERS proteins function in de novo ceramide synthesis.

    Article  CAS  PubMed  Google Scholar 

  10. Laviad, E. L., Kelly, S., Merrill, A. H. Jr & Futerman, A. H. Modulation of ceramide synthase activity via dimerization. J. Biol. Chem. 287, 21025–21033 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Pewzner-Jung, Y., Ben-Dor, S. & Futerman, A. H. When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. J. Biol. Chem. 281, 25001–25005 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Kraveka, J. M. et al. Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J. Biol. Chem. 282, 16718–16728 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Jennemann, R. et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21, 586–608 (2012).

    Article  PubMed  CAS  Google Scholar 

  15. Ogretmen, B. et al. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J. Biol. Chem. 277, 12960–12969 (2002). This study demonstrates the mechanisms by which exogenous ceramide is utilized for endogenous ceramide generation via the salvage or recycling pathway.

    Article  CAS  PubMed  Google Scholar 

  16. Wijesinghe, D. S., Lamour, N. F., Gomez-Munoz, A. & Chalfant, C. E. Ceramide kinase and ceramide-1-phosphate. Methods Enzymol. 434, 265–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Huitema, K., van den Dikkenberg, J., Brouwers, J. F. & Holthuis, J. C. Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Watters, R. J. et al. Targeting glucosylceramide synthase synergizes with C6-ceramide nanoliposomes to induce apoptosis in natural killer cell leukemia. Leuk. Lymphoma 54, 1288–1296 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. D'Angelo, G. et al. Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 501, 116–120 (2013). This manuscript describes mechanisms of ceramide trafficking by FAPP2 for glucosylceramide generation.

    Article  CAS  PubMed  Google Scholar 

  20. Simanshu, D. K. et al. Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature 500, 463–467 (2013). This manuscript describes the mechanism of C1P trafficking to regulate inflammation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Maceyka, M. & Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 510, 58–67 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Huang, W. C. et al. Sphingosine-1-phosphate phosphatase 2 promotes disruption of mucosal integrity, and contributes to ulcerative colitis in mice and humans. FASEB J. 30, 2945–2958 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zamora-Pineda, J., Kumar, A., Suh, J. H., Zhang, M. & Saba, J. D. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J. Exp. Med. 213, 2773–2791 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sandhoff, K. Metabolic and cellular bases of sphingolipidoses. Biochem. Soc. Trans. 41, 562–568 (2013).

    Article  CAS  Google Scholar 

  25. Rosenbloom, B. E. et al. Gaucher disease and cancer incidence: a study from the Gaucher Registry. Blood 105, 4569–4572 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Han, G. et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc. Natl Acad. Sci. USA 106, 8186–8191 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bode, H. et al. HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Hum. Mol. Genet. 25, 853–865 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Kramer, R. et al. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB J. 29, 4461–4472 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Breslow, D. K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Siow, D. L. & Wattenberg, B. W. Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis. J. Biol. Chem. 287, 40198–40204 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Meyers-Needham, M. et al. Concerted functions of HDAC1 and microRNA-574-5p repress alternatively spliced ceramide synthase 1 expression in human cancer cells. EMBO Mol. Med. 4, 78–92 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Koybasi, S. et al. Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J. Biol. Chem. 279, 44311–44319 (2004). This study describes a selective role for CERS1-generated C18 ceramide in head and neck cancer cell death.

    Article  CAS  PubMed  Google Scholar 

  33. Thomas, R. J. et al. HPV/E7 induces chemotherapy-mediated tumor suppression by ceramide-dependent mitophagy. EMBO Mol. Med. 9, 1030–1051 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Park, W. J. et al. Development of pheochromocytoma in ceramide synthase 2 null mice. Endocr. Relat. Cancer 22, 623–632 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fekry, B. et al. CerS6 is a novel transcriptional target of p53 protein activated by non-genotoxic stress. J. Biol. Chem. 291, 16586–16596 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. White-Gilbertson, S. et al. Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 28, 1132–1141 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lee, H. et al. Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PLoS ONE 6, e19783 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jensen, S. A. et al. Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc. Natl Acad. Sci. USA 111, 5682–5687 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Senkal, C. E., Ponnusamy, S., Bielawski, J., Hannun, Y. A. & Ogretmen, B. Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J. 24, 296–308 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Suzuki, M. et al. Targeting ceramide synthase 6-dependent metastasis-prone phenotype in lung cancer cells. J. Clin. Invest. 126, 254–265 (2016).

    Article  PubMed  Google Scholar 

  41. Senkal, C. E. et al. Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J. Biol. Chem. 286, 42446–42458 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schiffmann, S. et al. Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis 30, 745–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Rahmaniyan, M. et al. Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J. Biol. Chem. 286, 24754–24764 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Airola, M. V. et al. Structure of human nSMase2 reveals an interdomain allosteric activation mechanism for ceramide generation. Proc. Natl Acad. Sci. USA 114, E5549–E5558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gorelik, A., Illes, K., Heinz, L. X., Superti-Furga, G. & Nagar, B. Crystal structure of mammalian acid sphingomyelinase. Nat. Commun. 7, 12196 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Santana, P. et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Carpinteiro, A. et al. Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol. Med. 7, 714–734 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shamseddine, A. A. et al. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest. Cell Death Dis. 6, e1947 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008). This manuscript describes the mechanisms underlying ceramide-mediated exosome release.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Y. et al. Enhanced colonic tumorigenesis in alkaline sphingomyelinase (NPP7) knockout mice. Mol. Cancer Ther. 14, 259–267 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Barceló- Coblijn, G. et al. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc. Natl Acad. Sci. USA 108, 19569–19574 (2011).

    Article  Google Scholar 

  52. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003). This work provides the details of CERT-dependent ceramide transport from the ER to the Golgi.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X. et al. Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice. J. Cell Biol. 184, 143–158 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Heering, J. et al. Loss of the ceramide transfer protein augments EGF receptor signaling in breast cancer. Cancer Res. 72, 2855–2866 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, A. J. et al. CERT depletion predicts chemotherapy benefit and mediates cytotoxic and polyploid-specific cancer cell death through autophagy induction. J. Pathol. 226, 482–494 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Hullin-Matsuda, F. et al. Limonoid compounds inhibit sphingomyelin biosynthesis by preventing CERT protein-dependent extraction of ceramides from the endoplasmic reticulum. J. Biol. Chem. 287, 24397–24411 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wijesinghe, D. S. et al. Ceramide kinase is required for a normal eicosanoid response and the subsequent orderly migration of fibroblasts. J. Lipid Res. 55, 1298–1309 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Payne, A. W., Pant, D. K., Pan, T. C. & Chodosh, L. A. Ceramide kinase promotes tumor cell survival and mammary tumor recurrence. Cancer Res. 74, 6352–6363 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Pastukhov, O. et al. The ceramide kinase inhibitor NVP-231 inhibits breast and lung cancer cell proliferation by inducing M phase arrest and subsequent cell death. Br. J. Pharmacol. 171, 5829–5844 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kim, J. W. et al. Prognostic value of glucosylceramide synthase and P-glycoprotein expression in oral cavity cancer. Int. J. Clin. Oncol. 21, 883–889 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Roh, J. L., Kim, E. H., Park, J. Y. & Kim, J. W. Inhibition of glucosylceramide synthase sensitizes head and neck cancer to cisplatin. Mol. Cancer Ther. 14, 1907–1915 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Stefanovic, M. et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget 7, 8253–8267 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu, Y. Y. et al. Suppression of glucosylceramide synthase restores p53-dependent apoptosis in mutant p53 cancer cells. Cancer Res. 71, 2276–2285 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gupta, V. et al. Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells. J. Biol. Chem. 287, 37195–37205 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Eliyahu, E., Park, J. H., Shtraizent, N., He, X. & Schuchman, E. H. Acid ceramidase is a novel factor required for early embryo survival. FASEB J. 21, 1403–1409 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Cheng, J. C. et al. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J. Clin. Invest. 123, 4344–4358 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Beckham, T. H. et al. Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling. Oncogenesis 2, e49 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tirodkar, T. S. et al. Expression of ceramide synthase 6 transcriptionally activates acid ceramidase in a c-Jun N-terminal kinase (JNK)-dependent manner. J. Biol. Chem. 290, 13157–13167 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Airola, M. V. et al. Structural basis for ceramide recognition and hydrolysis by human neutral ceramidase. Structure 23, 1482–1491 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Garcia-Barros, M. et al. Role of neutral ceramidase in colon cancer. FASEB J. 30, 4159–4171 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Liakath-Ali, K. et al. Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure. J. Pathol. 239, 374–383 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mao, Z. et al. Alkaline ceramidase 2 (ACER2) and its product dihydrosphingosine mediate the cytotoxicity of N-(4-hydroxyphenyl)retinamide in tumor cells. J. Biol. Chem. 285, 29078–29090 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wang, K. et al. Alkaline ceramidase 3 deficiency aggravates colitis and colitis-associated tumorigenesis in mice by hyperactivating the innate immune system. Cell Death Dis. 7, e2124 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Xiong, Y., Yang, P., Proia, R. L. & Hla, T. Erythrocyte-derived sphingosine 1-phosphate is essential for vascular development. J. Clin. Invest. 124, 4823–4828 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wang, Z. et al. Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 21, 798–809 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. Kawamori, T. et al. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J. 23, 405–414 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Zhang, Y. et al. Sphingosine kinase 1 and cancer: a systematic review and meta-analysis. PLoS ONE. 9, e90362 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Postepska-Igielska, A. et al. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell 60, 626–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, Q. et al. Prognostic significance of sphingosine kinase 2 expression in non-small cell lung cancer. Tumour Biol. 35, 363–368 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, L., Liu, X., Zuo, Z., Hao, C. & Ma, Y. Sphingosine kinase 2 promotes colorectal cancer cell proliferation and invasion by enhancing MYC expression. Tumour Biol. 37, 8455–8460 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Hait, N. C., Bellamy, A., Milstien, S., Kordula, T. & Spiegel, S. Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J. Biol. Chem. 282, 12058–12065 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Degagne, E. et al. Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. J. Clin. Invest. 124, 5368–5384 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Oskouian, B. et al. Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc. Natl Acad. Sci. USA 103, 17384–17389 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Gao, X. Y. et al. Inhibition of sphingosine-1-phosphate phosphatase 1 promotes cancer cells migration in gastric cancer: clinical implications. Oncol. Rep. 34, 1977–1987 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Obeid, L. M., Linardic, C. M., Karolak, L. A. & Hannun, Y. A. Programmed cell death induced by ceramide. Science 259, 1769–1771 (1993). This is a key manuscript demonstrating that ceramide induces apoptosis.

    Article  PubMed  CAS  Google Scholar 

  86. Siskind, L. J. et al. Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels. J. Biol. Chem. 283, 6622–6630 (2008).

    Article  PubMed  CAS  Google Scholar 

  87. Chang, K. T. et al. Ceramide channels: destabilization by Bcl-xL and role in apoptosis. Biochim. Biophys. Acta 1848, 2374–2384 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chipuk, J. E. et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148, 988–1000 (2012). This manuscript provides mechanisms for BAX and BAK regulation by sphingolipid metabolism.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Blom, T. et al. LAPTM4B facilitates late endosomal ceramide export to control cell death pathways. Nat. Chem. Biol. 11, 799–806 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Mukhopadhyay, A. et al. Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J. 23, 751–763 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Saddoughi, S. A. et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol. Med. 5, 105–121 (2013). This study shows that ceramide binds I2PP2A to activate PP2A-dependent necroptosis.

    Article  CAS  PubMed  Google Scholar 

  92. Saddoughi, S. A. & Ogretmen, B. Diverse functions of ceramide in cancer cell death and proliferation. Adv. Cancer Res. 117, 37–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Jiang, W. & Ogretmen, B. Autophagy paradox and ceramide. Biochim. Biophys. Acta 1841, 783–792 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Hernandez-Tiedra, S. et al. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy 12, 2213–2229 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Corcelle-Termeau, E. et al. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy 12, 833–849 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sentelle, R. D. et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8, 831–838 (2012). This manuscript shows that ceramide directly binds LC3B-II to recruit autophagosomes to mitochondria for mitophagy induction.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Dany, M. et al. Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood 128, 1944–1958 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Salazar, M. et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest. 119, 1359–1372 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lepine, S., Allegood, J. C., Edmonds, Y., Milstien, S. & Spiegel, S. Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J. Biol. Chem. 286, 44380–44390 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Fekry, B., Esmaeilniakooshkghazi, A., Krupenko, S. A. & Krupenko, N. I. Ceramide synthase 6 is a novel target of methotrexate mediating its antiproliferative effect in a p53-dependent manner. PLoS ONE 11, e0146618 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Heffernan-Stroud, L. A. et al. Defining a role for sphingosine kinase 1 in p53-dependent tumors. Oncogene 31, 1166–1175 (2012).

    Article  PubMed  CAS  Google Scholar 

  102. Kitatani, K. et al. Ceramide limits phosphatidylinositol-3-kinase C2β-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene 35, 2801–2812 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Pitson, S. M. et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491–5500 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Takabe, K. et al. Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. J. Biol. Chem. 285, 10477–10486 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hisano, Y., Kobayashi, N., Yamaguchi, A. & Nishi, T. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS ONE 7, e38941 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. van der Weyden, L. et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541, 233–236 (2017). This manuscript describes a mechanism for S1P secretion via SPNS2 from lymphoid endothelial cells to regulate metastasis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ponnusamy, S. et al. Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol. Med. 4, 761–775 (2012). This manuscript describes a role for systemic S1P in inducing tumour metastasis by providing communication between host and cancer cells via S1PR2 signalling.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Visentin, B. et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9, 225–238 (2006). This manuscript provides validation of an anti-S1P antibody that neutralizes S1P signalling to promote tumour suppression.

    Article  CAS  PubMed  Google Scholar 

  109. Liang, J. et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23, 107–120 (2013). This manuscript describes a role for systemic S1P in inducing STAT3-dependent inflammation and colitis-associated colon cancer.

    Article  PubMed  CAS  Google Scholar 

  110. Brizuela, L. et al. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. Mol. Oncol. 8, 1181–1195 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Liu, Y. et al. S1PR1 is an effective target to block STAT3 signaling in activated B cell-like diffuse large B-cell lymphoma. Blood 120, 1458–1465 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Feng, H. et al. T-Lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. Cancer Cell 18, 353–366 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Powell, J. A. et al. Targeting sphingosine kinase 1 induces MCL1-dependent cell death in acute myeloid leukemia. Blood 129, 771–782 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Adada, M. M. et al. Intracellular sphingosine kinase 2-derived sphingosine-1-phosphate mediates epidermal growth factor-induced ezrin-radixin-moesin phosphorylation and cancer cell invasion. FASEB J. 29, 4654–4669 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Du, W. et al. S1P2, the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res. 70, 772–781 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Hirata, N. et al. Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. Nat. Commun. 5, 4806 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Zhao, J. et al. TGF-β/SMAD3 pathway stimulates sphingosine-1 phosphate receptor 3 expression: implication of sphingosine-1 phosphate receptor 3 in lung adenocarcinoma progression. J. Biol. Chem. 291, 27343–27353 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ohotski, J. et al. Expression of sphingosine 1-phosphate receptor 4 and sphingosine kinase 1 is associated with outcome in oestrogen receptor-negative breast cancer. Br. J. Cancer 106, 1453–1459 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Ohotski, J., Rosen, H., Bittman, R., Pyne, S. & Pyne, N. J. Sphingosine kinase 2 prevents the nuclear translocation of sphingosine 1-phosphate receptor-2 and tyrosine 416 phosphorylated c-Src and increases estrogen receptor negative MDA-MB-231 breast cancer cell growth: the role of sphingosine 1-phosphate receptor-4. Cell Signal. 26, 1040–1047 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Andrieu, G. et al. Sphingosine 1-phosphate signaling through its receptor S1P5 promotes chromosome segregation and mitotic progression. Sci Signal. 10, eaah4007 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Alvarez, S. E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010). This manuscript describes SPHK1-generated S1P signalling in TRAF2 binding and NF- κ B activation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Xiong, Y. et al. Sphingosine kinases are not required for inflammatory responses in macrophages. J. Biol. Chem. 288, 32563–32573 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Etemadi, N. et al. TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. Elife 4, e10592 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Parham, K. A. et al. Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor-γ that regulates neoangiogenesis. FASEB J. 29, 3638–3653 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hait, N. C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009). This work describes a role for SPHK2-generated S1P in binding HDAC1 and HDAC2 and inhibiting histone deacetylation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Strub, G. M. et al. Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J. 25, 600–612 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Panneer Selvam, S. et al. Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation. Sci. Signal. 8, ra58 (2015). This manuscript describes a mechanism for SPHK2-generated S1P to directly bind TERT to stabilize telomerase and prevent telomere damage via the phosphomimic function of S1P.

    Article  CAS  PubMed  Google Scholar 

  128. Bose, R. et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82, 405–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Saddoughi, S. A. et al. Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C18-ceramide as a novel biomarker for monitoring response. Clin. Cancer Res. 17, 6097–6105 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Senkal, C. E. et al. Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol. Cancer Ther. 6, 712–722 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Deng, X. et al. Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322, 110–115 (2008). This work describes mechanistic details of how ceramide mediates cell death in response to radiation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Rotolo, J. et al. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J. Clin. Invest. 122, 1786–1790 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Liu, Y. Y. et al. A role for ceramide in driving cancer cell resistance to doxorubicin. FASEB J. 22, 2541–2551 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, X. et al. Doxorubicin influences the expression of glucosylceramide synthase in invasive ductal breast cancer. PLoS ONE 7, e48492 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Rosa, R. et al. Sphingosine kinase 1 overexpression contributes to cetuximab resistance in human colorectal cancer models. Clin. Cancer Res. 19, 138–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Salas, A. et al. Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood 117, 5941–5952 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Huang, X. et al. miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 73, 6972–6986 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Fang, V. et al. Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-γ response. Nat. Immunol. 18, 15–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, F. et al. Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget 7, 83907–83925 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Nair, S. et al. Clonal immunoglobulin against lysolipids in the origin of myeloma. N. Engl. J. Med. 374, 555–561 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Pandey, M. K. et al. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease. Nature 543, 108–112 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Sofi, M. H. et al. Ceramide synthesis regulates T cell activity and GVHD development. JCI Insight 2, e91701 (2017).

    Article  PubMed Central  Google Scholar 

  143. Le Nours, J. et al. Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat. Commun. 7, 10570 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Lee, H. et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat. Med. 16, 1421–1428 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Deng, Z. et al. Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat. Commun. 6, 6956 (2015).

    Article  PubMed  CAS  Google Scholar 

  146. Garris, C. S. et al. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat. Immunol. 14, 1166–1172 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Luo, B. et al. Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance. Immunity 44, 287–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Neviani, P. et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J. Clin. Invest. 123, 4144–4157 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Beljanski, V., Lewis, C. S. & Smith, C. D. Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol. Ther. 11, 524–534 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Senkal, C. E. et al. Potent antitumor activity of a novel cationic pyridinium-ceramide alone or in combination with gemcitabine against human head and neck squamous cell carcinomas in vitro and in vivo. J. Pharmacol. Exp. Ther. 317, 1188–1199 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Beckham, T. H. et al. LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria. J. Pharmacol. Exp. Ther. 344, 167–178 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Liu, X. et al. Targeting of survivin by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Blood 116, 4192–4201 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02834611 (2016).

  156. Kapitonov, D. et al. Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res. 69, 6915–6923 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Schnute, M. E. et al. Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem. J. 444, 79–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Wang, J., Knapp, S., Pyne, N. J., Pyne, S. & Elkins, J. M. Crystal structure of sphingosine kinase 1 with PF-543. ACS Med. Chem. Lett. 5, 1329–1333 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Ju, T., Gao, D. & Fang, Z. Y. Targeting colorectal cancer cells by a novel sphingosine kinase 1 inhibitor PF-543. Biochem. Biophys. Res. Commun. 470, 728–734 (2016).

    Article  PubMed  CAS  Google Scholar 

  160. Kennedy, P. C. et al. Characterization of a sphingosine 1-phosphate receptor antagonist prodrug. J. Pharmacol. Exp. Ther. 338, 879–889 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Li, M. H. et al. Antitumor activity of a novel sphingosine-1-phosphate 2 antagonist, AB1, in neuroblastoma. J. Pharmacol. Exp. Ther. 354, 261–268 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Pal, S. K. et al. A phase 2 study of the sphingosine-1-phosphate antibody sonepcizumab in patients with metastatic renal cell carcinoma. Cancer 123, 576–582 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Lewis, C. S., Voelkel-Johnson, C. & Smith, C. D. Suppression of c-Myc and RRM2 expression in pancreatic cancer cells by the sphingosine kinase-2 inhibitor ABC294640. Oncotarget 7, 60181–60192 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Venant, H. et al. The sphingosine kinase 2 inhibitor ABC294640 reduces the growth of prostate cancer cells and results in accumulation of dihydroceramides in vitro and in vivo. Mol. Cancer Ther. 14, 2744–2752 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Britten, C. D. et al. A phase I study of ABC294640, a first-in-class sphingosine kinase-2 inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 23, 4642–4650 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02939807 (2016).

  167. Venkata, J. K. et al. Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood 124, 1915–1925 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02757326 (2016).

  169. Qin, Z. et al. Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol. Cancer Ther. 13, 154–164 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02229981 (2014).

  171. Bielawski, J. et al. Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol. Biol. 579, 443–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Shaner, R. L. et al. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J. Lipid Res. 50, 1692–1707 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Senkal, C. E. et al. Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metab. 25, 686–697 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Russo, S. B., Tidhar, R., Futerman, A. H. & Cowart, L. A. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J. Biol. Chem. 288, 13397–13409 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Menuz, V. et al. Protection of C. elegans from anoxia by HYL-2 ceramide synthase. Science 324, 381–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Mesicek, J. et al. Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22, 1300–1307 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks N. Oleinik and C. Frichtel for their editorial assistance. The author is also thankful to Z. Szulc for his assistance with the chemical structures of sphingolipid molecules and the members of his laboratory for their helpful discussions. The author apologizes to those investigators whose publications were not mentioned in this Review owing to space limitations. This work is supported by research grants from the NIH (R01-DE16572, R01-CA88932, R01-CA173687 and P01-CA203628), and the South Carolina SmartState Endowment for Lipidomics and Drug Discovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besim Ogretmen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

Lipidomics web

PowerPoint slides

Glossary

Lactosylceramide

A type of ceramide (globoside) that is incorporated with lactose.

Glycosphingolipids

A subtype of glycolipids that contain amino alcohol sphingosine, which include cerebrosides, gangliosides and globosides.

Lysosomal storage diseases

A group of inherited metabolic disorders that result from defective lysosomal function and are mainly associated with accumulation of sphingolipids and/or glycosphingolipids.

Pheochromocytoma

A rare tumour of the adrenal gland.

Eicosanoid

A class of bioactive lipid derived from polyunsaturated fatty acids, which include prostaglandins, leukotrienes and thromboxanes.

Hexosylceramides

Ceramide molecules that contain a hexosyl group, such as monohexosylceramide (glucosylceramide).

Necroptosis

A programmed necrosis involving receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 signalling that ruptures the plasma membrane, leading to cellular rupture and death.

Mitochondrial outer membrane permeabilization

(MOMP). A key step in the execution of apoptosis, regulated by BCL-2 family member proteins, that leads to the release of pro-cell death factors, such as cytochrome c, from the internal mitochondrial membrane to engage with caspase signalling.

Mitophagy

A form of autophagy that selectively degrades damaged mitochondria through the actions of double-membraned autophagosomes.

Survival autophagy

A type of macroautophagy that mediates a vacuolar and self-digesting mechanism responsible for the removal of damaged proteins and/or organelles by double-membraned autophagosomes associated with lysosomes, providing nutrients for cell survival during stress conditions such as starvation.

Mitochondrial fission

The partition of the mitochondrial membrane between two forming daughter mitochondria, which is regulated by a set of proteins including dynamin-related protein 1 (DRP1), parkin and PTEN-induced putative kinase 1 (PINK1).

Lymphopaenia

A condition defined by the presence of abnormally low levels of lymphocytes (white blood cells or immune cells) in the blood.

Gastrointestinal radiation syndrome

A syndrome caused by exposure to high doses of radiation that induces substantial cell death in the gastrointestinal tract.

Allogeneic haematopoietic stem cell transplantation

(Allo-HSCT). A transplantation of multipotent haematopoietic stem cells derived from bone marrow, peripheral blood or umbilical cord blood from a genetically dissimilar donor for the treatment of patients with multiple myeloma or leukaemia.

Graft-versus-host disease

A medical complication that might occur after allogeneic haematopoietic stem cell transplantation, in which transplanted immune cells from a donor (graft) recognize the recipient (host) tissues as foreign (non-self), attacking the host cells and resulting in tissue or organ damage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogretmen, B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 18, 33–50 (2018). https://doi.org/10.1038/nrc.2017.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.96

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer