Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolating lipid droplets from multiple species

Abstract

The lipid droplet (LD) is a cell organelle that has been linked to human metabolic syndromes and that can be exploited for the development of biofuels. The isolation of LDs is crucial for carrying out morphological and biochemical studies of this organelle. In the past two decades, LDs have been isolated from several organisms and investigated by microscopy, proteomics and lipidomics. However, these studies need to be extended to more model organisms, as well as to more animal tissues. Thus, a standard method that can be easily applied to these new samples with the need for minimal optimization is essential. Here we provide an LD isolation protocol that is relatively simple and suitable for a wide range of tissues and organisms. On the basis of previous studies, this 7-h protocol can yield 15–100 μg of protein-equivalent high-quality LDs that satisfy the requirements for current LD research in most organisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quality control of the isolated lipid droplets (LDs).
Figure 2: Verification of isolated lipid droplets (LDs).

Similar content being viewed by others

References

  1. Murphy, D.J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res. 40, 325–438 (2001).

    Article  CAS  Google Scholar 

  2. Martin, S. & Parton, R.G. Lipid droplets: a unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 7, 373–378 (2006).

    Article  CAS  Google Scholar 

  3. Farese, R.V. Jr & Walther, T.C. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139, 855–860 (2009).

    Article  CAS  Google Scholar 

  4. Samuel, V.T. & Shulman, G.I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  CAS  Google Scholar 

  5. DeBerardinis, R.J. & Thompson, C.B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132–1144 (2012).

    Article  CAS  Google Scholar 

  6. Murphy, D.J. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249, 541–585 (2012).

    Article  CAS  Google Scholar 

  7. Singh, A., Nigam, P.S. & Murphy, J.D. Mechanism and challenges in commercialisation of algal biofuels. Bioresour. Technol. 102, 26–34 (2011).

    Article  CAS  Google Scholar 

  8. Waltermann, M. & Steinbuchel, A. Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J. Bacteriol. 187, 3607–3619 (2005).

    Article  Google Scholar 

  9. Zehmer, J.K. et al. A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9, 914–921 (2009).

    Article  CAS  Google Scholar 

  10. Ohsaki, Y. et al. Biogenesis of cytoplasmic lipid droplets: from the lipid ester globule in the membrane to the visible structure. Biochim. Biophys. Acta 1791, 399–407 (2009).

    Article  CAS  Google Scholar 

  11. Goodman, J.M. The gregarious lipid droplet. J. Biol. Chem. 283, 28005–28009 (2008).

    Article  CAS  Google Scholar 

  12. Murphy, S., Martin, S. & Parton, R.G. Lipid droplet-organelle interactions; sharing the fats. Biochim. Biophys. Acta 1791, 441–447 (2009).

    Article  CAS  Google Scholar 

  13. Zhang, S., Du, Y., Wang, Y. & Liu, P. Lipid droplet—a cellular organelle for lipid metabolism. Acta Biophys. Sin. 26, 97–105 (2010).

    Google Scholar 

  14. Yang, L. et al. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J. Lipid Res. 53, 1245–1253 (2012).

    Article  CAS  Google Scholar 

  15. Liu, P. et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279, 3787–3792 (2004).

    Article  CAS  Google Scholar 

  16. Kim, S.C. et al. A clean, more efficient method for in-solution digestion of protein mixtures without detergent or urea. J. Proteome Res. 5, 3446–3452 (2006).

    Article  CAS  Google Scholar 

  17. Bartz, R. et al. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J. Proteome Res. 6, 3256–3265 (2007).

    Article  CAS  Google Scholar 

  18. Zhang, H. et al. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I. J. Proteome Res. 10, 4757–4768 (2011).

    Article  CAS  Google Scholar 

  19. Zhang, P. et al. Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol. Cell. Proteomics 11, 317–328 (2012).

    Article  Google Scholar 

  20. Binns, D. et al. An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 173, 719–731 (2006).

    Article  CAS  Google Scholar 

  21. Ding, Y. et al. Identification of the major functional proteins of prokaryotic lipid droplets. J. Lipid Res. 53, 399–411 (2012).

    Article  CAS  Google Scholar 

  22. Brasaemle, D.L. et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835–46842 (2004).

    Article  CAS  Google Scholar 

  23. Brasaemle, D.L. & Wolins, N.E. Isolation of lipid droplets from cells by density gradient centrifugation. Curr. Protoc. Cell Biol. 3 3.15 (2006).

  24. Kalscheuer, R. et al. Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch. Microbiol. 177, 20–28 (2001).

    Article  CAS  Google Scholar 

  25. Low, K.L. et al. Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guérin. J. Biol. Chem. 285, 21662–21670 (2010).

    Article  CAS  Google Scholar 

  26. Moellering, E.R. & Benning, C. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell 9, 97–106 (2010).

    Article  CAS  Google Scholar 

  27. Nguyen, H.M. et al. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11, 4266–4273 (2011).

    Article  CAS  Google Scholar 

  28. Athenstaedt, K. et al. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J. Bacteriol. 181, 6441–6448 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Grillitsch, K. et al. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets Proteome. Biochim. Biophys. Acta 1811, 1165–1176 (2011).

    Article  CAS  Google Scholar 

  30. Beller, M. et al. Characterization of the Drosophila lipid droplet subproteome. Mol. Cell. Proteomics 5, 1082–1094 (2006).

    Article  CAS  Google Scholar 

  31. Cermelli, S. et al. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16, 1783–1795 (2006).

    Article  CAS  Google Scholar 

  32. Jacks, T.J., Yatsu, L.Y. & Altschul, A.M. Isolation and characterization of peanut spherosomes. Plant Physiol. 42, 585–597 (1967).

    Article  CAS  Google Scholar 

  33. Yatsu, L.Y., Jacks, T.J. & Hensarling, T.P. Isolation of spherosomes (oleosomes) from onion, cabbage, and cottonseed tissues. Plant Physiol. 48, 675–682 (1971).

    Article  CAS  Google Scholar 

  34. Jolivet, P. et al. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol. Biochem. 42, 501–509 (2004).

    Article  CAS  Google Scholar 

  35. Lin, L.J. et al. Determination and analyses of the N-termini of oil-body proteins, steroleosin, caleosin and oleosin. Plant Physiol. Biochem. 43, 770–776 (2005).

    Article  CAS  Google Scholar 

  36. Katavic, V. et al. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6, 4586–4598 (2006).

    Article  CAS  Google Scholar 

  37. Jolivet, P. et al. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9, 3268–3284 (2009).

    Article  CAS  Google Scholar 

  38. Jolivet, P. et al. Oil body proteins sequentially accumulate throughout seed development in Brassica napus. J. Plant. Physiol. 168, 2015–2020 (2011).

    Article  CAS  Google Scholar 

  39. Fujimoto, Y. et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim. Biophys. Acta 1644, 47–59 (2004).

    Article  CAS  Google Scholar 

  40. Sato, S. et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J. Biochem. 139, 921–930 (2006).

    Article  CAS  Google Scholar 

  41. Wan, H.C. et al. Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J. 21, 167–178 (2007).

    Article  CAS  Google Scholar 

  42. Bouchoux, J. et al. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol. Cell 103, 499–517 (2011).

    Article  CAS  Google Scholar 

  43. Larsson, S. et al. Characterization of the lipid droplet proteome of a clonal insulin-producing beta cell line (INS-1 832/13). J. Proteome Res. 11, 1264–1273 (2012).

    Article  CAS  Google Scholar 

  44. Nissen, H.M. & Bojesen, I. On lipid droplets in renal interstitial cells. IV. Isolation and identification. Z Zellforsch Mikrosk Anat 97, 274–284 (1969).

    Article  CAS  Google Scholar 

  45. Lang, P.D. & Insull, W. Jr Lipid droplets in atherosclerotic fatty streaks of human aorta. J. Clin. Invest. 49, 1479–1488 (1970).

    Article  CAS  Google Scholar 

  46. DiAugustine, R.P., Schaefer, J.M. & Fouts, J.R. Hepatic lipid droplets. Isolation, morphology and composition. Biochem. J. 132, 323–327 (1973).

    Article  CAS  Google Scholar 

  47. Hood, L.F. & Patton, S. Isolation and characterization of intracellular lipid droplets from bovine mammary tissue. J. Dairy Sci. 56, 858–863 (1973).

    Article  CAS  Google Scholar 

  48. Comai, K., Farber, S.J. & Paulsrud, J. Analyses of renal medullary lipid droplets from normal, hydronephrotic, and indomethacin treated rabbits. Lipids 10, 555–561 (1975).

    Article  CAS  Google Scholar 

  49. Mrotek, J.J. et al. A method for the isolation of lipid droplet fractions from decapsulated rat adrenals. Steroids 38, 229–241 (1981).

    Article  CAS  Google Scholar 

  50. Moriwaki, H., Blaner, W.S., Piantedosi, R. & Goodman, D.S. Effects of dietary retinoid and triglyceride on the lipid composition of rat liver stellate cells and stellate cell droplets. J. Lipid Res. 29, 1523–1534 (1988).

    CAS  PubMed  Google Scholar 

  51. Wu, C.C. et al. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 21, 3470–3482 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Fleming for critical reading of this manuscript and useful suggestions. This work was supported by grants from the Ministry of Science and Technology of China (grant nos. 2009CB919000 and 2011CBA00906), and the National Natural Science Foundation of China (grant nos. 30971431, 31000365 and 31100068).

Author information

Authors and Affiliations

Authors

Contributions

Y.D., L.Y., Y.W., J.Y. and C.H. contributed to the development of LD purification from bacteria. H.N. and P.Z. contributed to the development of LD purification from C. elegans. H.Z., Y.W., S.X., Y. Chen and P.L. contributed to the development of LD purification from mammalian tissues and cells. Y.D., L.Y. and M.G. contributed to the development of LD purification from yeast. S.Z. contributed to developing the LD electron microscopy methodology. Y.D., S.Z., L.Y., Y. Cong and P.L. wrote the manuscript.

Corresponding author

Correspondence to Pingsheng Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Zhang, S., Yang, L. et al. Isolating lipid droplets from multiple species. Nat Protoc 8, 43–51 (2013). https://doi.org/10.1038/nprot.2012.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.142

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing