Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs

Abstract

The transcription factor affinity prediction (TRAP) method calculates the affinity of transcription factors for DNA sequences on the basis of a biophysical model. This method has proven to be useful for several applications, including for determining the putative target genes of a given factor. This protocol covers two other applications: (i) determining which transcription factors have the highest affinity in a set of sequences (illustrated with chromatin immunoprecipitation–sequencing (ChIP-seq) peaks), and (ii) finding which factor is the most affected by a regulatory single-nucleotide polymorphism. The protocol describes how to use the TRAP web tools to address these questions, and it also presents a way to run TRAP on random control sequences to better estimate the significance of the results. All of the tools are fully available online and do not need any additional installation. The complete protocol takes about 45 min, but each individual tool runs in a few minutes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General principle of hit-based and affinity-based approaches.
Figure 3: The 'TRAP multiple sequences' form.
Figure 4: The 'TRAP multiple sequences' result for the glucocorticoid receptor example.
Figure 5: The results page of the binding site predictions on the ChIP-seq example data set, shown after clicking on the 'Sites' button.
Figure 6: The results page for 'TRAP multiple sequences' analyses.
Figure 7: The results page for the 'sTRAP' regulatory SNP analysis.
Figure 8: Affinity profiles for 'sTRAP' regulatory SNP analysis, for the top-ranking matrix.
Figure 2: Home page of the TRAP web tools.

Similar content being viewed by others

References

  1. Wasserman, W.W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 5, 276–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Hertz, G.Z. & Stormo, G.D. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15, 563–577 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Turatsinze, J.-V., Thomas-Chollier, M., Defrance, M. & van Helden, J. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nat. Protoc. 3, 1578–1588 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Rahmann, S., Müller, T. & Vingron, M. On the power of profiles for transcription factor binding site detection. Stat. Appl. Genet. Mol. Biol. 2, Article7 (2003).

    Article  PubMed  Google Scholar 

  7. Medina-Rivera, A. et al. Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res. 39, 808–824 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roider, H.G., Kanhere, A., Manke, T. & Vingron, M. Predicting transcription factor affinities to DNA from a biophysical model. Bioinformatics 23, 134–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Manke, T., Roider, H.G. & Vingron, M. Statistical modeling of transcription factor binding affinities predicts regulatory interactions. PLoS Comput. Biol. 4, e1000039 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Warnatz, H.-J. et al. Functional analysis and identification of cis-regulatory elements of human chromosome 21 gene promoters. Nucleic Acids Res. 38, 6112–6123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roider, H. et al. PASTAA: identifying transcription factors associated with sets of co-regulated genes. Bioinformatics 25, 435–442 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. McLeay, R.C. & Bailey, T.L. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 11, 165 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manke, T., Heinig, M. & Vingron, M. Quantifying the effect of sequence variation on regulatory interactions. Hum. Mutat. 31, 477–483 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Aerts, S. et al. TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis. Nucleic Acids Res. 33, W393–W396 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ho Sui, S.J. et al. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res. 33, 3154–3164 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chang, L.-W., Fontaine, B.R., Stormo, G.D. & Nagarajan, R. PAP: a comprehensive workbench for mammalian transcriptional regulatory sequence analysis. Nucleic Acids Res. 35, W238–W244 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Granek, J.A. & Clarke, N.D. Explicit equilibrium modeling of transcription-factor binding and gene regulation. Genome Biol. 6, R87 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Portales-Casamar, E. et al. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 38, D105–D110 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wingender, E., Dietze, P., Karas, H. & Knüppel, R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24, 238–241 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Defrance, M., Janky, R.s., Sand, O. & van Helden, J. Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences. Nat. Protoc. 3, 1589–1603 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Stritt, C. et al. Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat. Neurosci. 12, 418–427 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Schaefer, A.S. et al. A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Hum. Mol. Genet. 19, 553–562 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Reddy, T.E. et al. Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res. 19, 2163–2171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Bosscher, K. Selective glucocorticoid receptor modulators. J. Steroid Biochem. Mol. Biol. 120, 96–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Fujita, P.A. et al. The UCSC genome browser database: update 2011. Nucleic Acids Res. 39, D876–D882 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Hufton, A. et al. Deeply conserved chordate non-coding sequences preserve genome synteny but do not drive gene duplicate retention. Genome Res. 19, 2036–2051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Helden, J. Regulatory sequence analysis tools. Nucleic Acids Res. 31, 3593–3596 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas-Chollier, M. et al. RSAT: regulatory sequence analysis tools. Nucleic Acids Res. 39, W86–W91 (2008).

    Article  Google Scholar 

  29. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goecks, J., Nekrutenko, A., Taylor, J. & Team, T.G. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Christoffels, V. et al. Glucocorticoid receptor, C/EBP, HNF3, and protein kinase A coordinately activate the glucocorticoid response unit of the carbamoylphosphate synthetase I gene. Mol. Cell Biol. 18, 6305–6315 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Gobbi, M. et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312, 1215–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alexander von Humboldt foundation. We thank A. Mysickova for her insightful comments on this protocol, and S. Haas for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.G.R., T.M. and M.V. developed the original TRAP approach and the P value calculation. M.H., T.M. and M.V. developed the sTRAP approach. A.H. implemented the combination of P values approach and the first version of the web tools. M.T.-C. integrated the different approaches, added new matrix and background models, and supervised the remodeling of the website by N.E.M. S.O. helped in the implementation of the website. M.T.-C. wrote the manuscript, and A.H., S.O., H.G.R. and T.M. edited the manuscript.

Corresponding author

Correspondence to Morgane Thomas-Chollier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas-Chollier, M., Hufton, A., Heinig, M. et al. Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs. Nat Protoc 6, 1860–1869 (2011). https://doi.org/10.1038/nprot.2011.409

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.409

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing