Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

FLP/FRT-mediated conditional mutagenesis in pre-erythrocytic stages of Plasmodium berghei

Abstract

We describe here a highly efficient procedure for conditional mutagenesis in Plasmodium. The procedure uses the site-specific recombination FLP-FRT system of yeast and targets the pre-erythrocytic stages of the rodent Plasmodium parasite P. berghei, including the sporozoite stage and the subsequent liver stage. The technique consists of replacing the gene under study by an FRTed copy (i.e., flanked by FRT sites) in the erythrocytic stages of a parasite clone that expresses the flip (FLP) recombinase stage-specifically—called the 'deleter' clone. We present the available deleter clones, which express FLP at different times of the parasite life cycle, as well as the schemes and tools for constructing new deleter parasites. We also outline and discuss the various strategies for exchanging a wild-type gene with an FRTed copy and for generating conditional gene knockout or knockdown parasite clones. Finally, we detail the protocol for obtaining sporozoites that lack a protein of interest and for monitoring sporozoite-specific DNA excision and depletion of the target protein. The protocol should allow the functional analysis of any essential protein in the sporozoite, liver stage or hepatic merozoite stages of rodent Plasmodium parasites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The FLP/FRT site-specific recombination system.
Figure 2: Construction of the UIS4/FLP P. berghei deleter clone and SSR efficiency at the sporozoite stage.
Figure 3: Testing SSR efficiency mediated by the TRAP/FLPL SSR system using a GFP reporter at the CS locus.
Figure 4: Constructing a deleter clone.
Figure 5: Placing an FRT site upstream of the start codon of the target gene.
Figure 6: Placing an FRT site in an intron of a multiexon target gene.
Figure 7: Placing an FRT site downstream of the stop codon of the target gene.
Figure 8: The p3′regFRT plasmid.
Figure 9: Conditional deletion of the target locus.
Figure 10: Wild-type and recombinant TRAP and UIS4 loci in the deleter clones.
Figure 11: PCR primers for assessing the outcome of gene targeting experiments.

Similar content being viewed by others

References

  1. Wu, Y., Kirkman, L.A. & Wellems, T.E. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl. Acad. Sci. USA 93, 1130–1134 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Dijk, M.R., Janse, C.J. & Waters, A.P. Expression of a Plasmodium gene introduced into subtelomeric regions of Plasmodium berghei chromosomes. Science 271, 662–665 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Carvalho, T.G. & Ménard, R. Manipulating the Plasmodium genome. Curr. Issues Mol. Biol. 7, 39–55 (2005).

    CAS  PubMed  Google Scholar 

  4. Cowman, A.F. et al. Functional analysis of proteins involved in Plasmodium falciparum merozoite invasion of red blood cells. FEBS Lett. 476, 84–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Ménard, R., Heussler, V., Yuda, M. & Nussenzweig, V. Plasmodium pre-erythrocytic stages: what's new? Trends Parasitol. 24, 564–569 (2008).

    Article  PubMed  Google Scholar 

  6. Vaughan, A.M., Aly, A.S. & Kappe, S.H. Malaria parasite pre-erythrocytic stage infection: gliding and hiding. Cell Host & Microbe 4, 209–218 (2008).

    Article  CAS  Google Scholar 

  7. Casares, S., Brumeanu, T.D. & Richie, T.L. The RTS,S malaria vaccine. Vaccine 12, 4880–4894 (2010).

    Article  Google Scholar 

  8. Ménard, R. et al. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature 385, 336–340 (1997).

    Article  PubMed  Google Scholar 

  9. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gossen, M. & Bujard, H. Studying gene function in eukaryotes by conditional gene inactivation. Annu. Rev. Genet. 36, 153–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Meissner, M. et al. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators. Proc. Natl. Acad. Sci. USA 102, 2980–2985 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meissner, M., Schlüter, D. & Soldati, D. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298, 837–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Mital, J., Meissner, M., Soldati, D. & Ward, G.E. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol. Biol. Cell 16, 4341–4349 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huynh, M.H. & Carruthers, V.B. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog. 2, e84 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Banaszynski, L.A., Chen, L.-C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armstrong, C.M. & Goldberg, D.E. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat. Methods 4, 1007–1009 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Herm-Götz, A. et al. Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat. Methods 4, 1003–1005 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Agop-Nersesian, C. et al. Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B. PLoS Pathog. 6, e1001029 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Branda, C.S. & Dymecki, S.M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Gil Carvalho, T., Thiberge, S., Sakamoto, H. & Ménard, R. Conditional mutagenesis using site-specific recombination in Plasmodium berghei. Proc. Natl. Acad. Sci. USA 101, 14931–14936 (2004).

    Article  Google Scholar 

  21. Combe, A. et al. Clonal conditional mutagenesis in malaria parasites. Cell Host & Microbe 5, 386–396 (2009).

    Article  CAS  Google Scholar 

  22. Falae, A. et al. Role of Plasmodium berghei cGMP-dependent protein kinase in late liver stage development. J. Biol. Chem. 285, 3282–3288 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Ringrose, L. et al. Comparative kinetic analysis of FLP and Cre recombinases: mathematical models for DNA binding and recombination. J. Mol. Biol. 284, 363–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Abremski, K. & Hoess, R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J. Biol. Chem. 259, 1509–1514 (1984).

    CAS  PubMed  Google Scholar 

  25. Buchholz, F., Angrand, P.-O. & Stewart, A.F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotech. 16, 657–662 (1998).

    Article  CAS  Google Scholar 

  26. Rodriguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Gen. 25, 139–140 (2000).

    Article  CAS  Google Scholar 

  27. Buchholz, F., Ringrose, L., Angrand, P.-O., Rossi, F. & Stewart, A.F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res. 24, 4256–4262 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Senecoff, J.F., Rossmeissl, P.J. & Cox, M.M. DNA recognition by the FLP recombinase of the yeast 2m plasmid: a mutational analysis of the FLP binding site. J. Mol. Biol. 201, 405–421 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Matuschewski, K. et al. Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. J. Biol. Chem. 277, 41948–41953 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Rosinski-Chupin, I. et al. Serial analysis of gene expression in Plasmodium berghei salivary gland sporozoites. BMC Genomics 8, 466 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ishino, T., Orito, Y., Chinzei, Y. & Yuda, M. A calcium-dependent protein kinase regulates Plasmodium ookinetes access to the midgut epithelial cell. Mol. Microbiol. 59, 1175–1184 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Amino, R. et al. Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host & Microbe 3, 88–96 (2008).

    Article  CAS  Google Scholar 

  33. O'Donnell, R.A., Saul, A., Cowman, A.F. & Crabb, B.S. Functional conservation of the malaria vaccine antigen MSP1-19 across distantly related Plasmodium species. Nat. Med. 6, 91–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Triglia, T. et al. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol. Microbiol. 38, 706–718 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Nunes, A. et al. Subtle mutagenesis by ends-in recombination in malaria parasites. Mol. Cell Biol. 19, 2895–2902 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tycowski, K.T., Kolev, N.G., Conrad, N.K., Fok, V. & Steitz, J.A. The ever-growing world of small nuclear ribonucleoproteins in the RNA world. (eds. Gesteland, R.F., Cech, T. & Atkins, J.F.) 331 (Cold Spring Harbor Laboratory Press, 2006).

  37. Janse, C.J., Ramesar, J. & Waters, A.P. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malarial parasite Plasmodium berghei. Nat. Protoc. 1, 346–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Thiberge, S. et al. In vivo imaging of malaria parasites in the murine liver. Nat. Protoc. 2, 1811–1818 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Mair, G.R. et al. Regulation of sexual development of Plasmodium by translational repression. Science 313, 667–669 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Applied Biosystems. Real-time PCR Systems: Chemistry Guide, Part no. 4348358, Rev. E http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_041440.pdf (2005).

  41. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  42. Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Bourgouin and I. Thiéry and the other members of the Center for Production and Infection of Anopheles of Institut Pasteur for rearing the mosquitoes. This work was performed with the financial help of the American Heart Association (to P.B.); of the 'Institut Carnot-Pasteur Maladies Infectieuses' (to J.-C.B.); and of the Institut Pasteur, the 'Agence Nationale pour la Recherche' and the Howard Hughes Medical Institute International Program (to R.M.).

Author information

Authors and Affiliations

Authors

Contributions

C.L. performed all transfections, contributed to the characterization of conditional clones and is the protocol expert; D.G. and A.C. constructed the deleters, and inactivated and characterized MSP1, AMA1 and RON4; S.S. characterized the AMA1 and RON4 mutant; D.P. and P.B. inactivated PKG and provided Figure 6; D.B., L.T. and J.-C.B. helped to refine the 3′ excision strategy; S.T. helped with transfections; T.G.C. demonstrated the feasibility of the clonal conditional approach; and R.M. wrote the paper.

Corresponding authors

Correspondence to Céline Lacroix or Robert Ménard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacroix, C., Giovannini, D., Combe, A. et al. FLP/FRT-mediated conditional mutagenesis in pre-erythrocytic stages of Plasmodium berghei. Nat Protoc 6, 1412–1428 (2011). https://doi.org/10.1038/nprot.2011.363

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.363

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing