Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors

Abstract

Small GTPases act as molecular switches that regulate a variety of cellular functions, such as proliferation, cell movement and vesicle trafficking. Genetically encoded biosensors based on the principle of fluorescence resonance energy transfer (FRET) can visualize a spatio-temporal activity of small GTPases in living cells, thereby helping us to understand the role of small GTPases intuitively and vividly. Here we describe protocols of live cell imaging with the FRET biosensors. There are several types of FRET biosensors; this protocol focuses on intramolecular or unimolecular FRET biosensors of small GTPases that are made up of donor and acceptor fluorescence proteins, a small GTPase, its binding partner, and, if necessary, a subcellular localization signal. These FRET biosensors uncover the spatio-temporal activity of the small GTPases in living cells, which could not be obtained by conventional biochemical methods. Preparation of FRET biosensors and cell culture takes 6 d. Imaging and processing take 3–4 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of intramolecular fluorescence resonance energy transfer (FRET) biosensors of small GTPases.
Figure 2: Layout of the experimental setup.
Figure 3: Fluorescence resonance energy transfer (FRET) imaging of epidermal growth factor (EGF)-induced activation of Ras.
Figure 4: Fluorescence resonance energy transfer (FRET) imaging of Rac1 and Cdc42 in randomly migrating HT-1,080 cells.

Similar content being viewed by others

References

  1. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    Article  CAS  Google Scholar 

  2. Wennerberg, K., Rossman, K.L. & Der, C.J. The Ras superfamily at a glance. J. Cell Sci. 118, 843–846 (2005).

    CAS  Google Scholar 

  3. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  Google Scholar 

  6. Bos, J.L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    Article  CAS  Google Scholar 

  7. Schmidt, A. & Hall, A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587–1609 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Bernards, A. & Settleman, J. GAP control: regulating the regulators of small GTPases. Trends Cell Biol. 14, 377–385 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Olofsson, B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 11, 545–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. DerMardirossian, C. & Bokoch, G.M. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15, 356–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Tsien, R.Y. & Miyawaki, A. Seeing the machinery of live cells. Science 280, 1954–1955 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Pollok, B.A. & Heim, R. Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Jares-Erijman, E.A. & Jovin, T.M. FRET imaging. Nat. Biotechnol. 21, 1387–1895 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Hahn, K. & Toutchkine, A. Live-cell fluorescent biosensors for activated signaling proteins. Curr. Opin. Cell Biol. 14, 167–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Pertz, O. & Hahn, K.M. Designing biosensors for Rho family proteins—deciphering the dynamics of Rho family GTPase activation in living cells. J. Cell Sci. 117, 1313–1318 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Kiyokawa, E., Hara, S., Nakamura, T. & Matsuda, M. Fluorescence (Forster) resonance energy transfer imaging of oncogene activity in living cells. Cancer Sci. 97, 8–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Aoki, K., Kiyokawa, E., Nakamura, T. & Matsuda, M. Visualization of growth signal transduction cascades in living cells with genetically encoded probes based on Forster resonance energy transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2143–2151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  22. Palmer, A.E. & Tsien, R.Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protoc. 1, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    Article  CAS  Google Scholar 

  24. Geyer, M. & Wittinghofer, A. GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Curr. Opin. Struct. Biol. 7, 786–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Takaya, A., Ohba, Y., Kurokawa, K. & Matsuda, M. RalA activation at nascent lamellipodia of epidermal growth factor-stimulated Cos7 cells and migrating Madin-Darby canine kidney cells. Mol. Biol. Cell 15, 2549–2557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takaya, A. et al. R-Ras regulates exocytosis by Rgl2/Rlf-mediated activation of RalA on endosomes. Mol. Biol. Cell 18, 1850–1860 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoshizaki, H. et al. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J. Cell Biol. 162, 223–232 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Itoh, R.E. et al. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell Biol. 22, 6582–6591 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawase, K. et al. GTP hydrolysis by the Rho family GTPase TC10 promotes exocytic vesicle fusion. Dev. Cell 11, 411–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Pertz, O., Hodgson, L., Klemke, R.L. & Hahn, K.M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072 (2006).

    Article  CAS  Google Scholar 

  31. Kitano, M. et al. Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature 453, 241–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Gibbs, J.B. Determination of guanine nucleotides bound to Ras in mammalian cells. Methods Enzymol. 255, 118–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, S.J. & Shalloway, D. Cell cycle-dependent activation of Ras. Curr. Biol. 6, 1621–1627 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. de Rooij, J. & Bos, J.L. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14, 623–625 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Kurokawa, K. et al. Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor. Mol. Biol. Cell 15, 1003–1010 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aoki, K., Nakamura, T. & Matsuda, M. Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells. J. Biol. Chem. 279, 713–719 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura, T., Aoki, K. & Matsuda, M. Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes. Methods 37, 146–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Sinnecker, D., Voigt, P., Hellwig, N. & Schaefer, M. Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44, 7085–7094 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Henderson, J.N., Ai, H.W., Campbell, R.E. & Remington, S.J. Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc. Natl. Acad. Sci. USA 104, 6672–6677 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Fujioka, A. et al. Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J. Biol. Chem. 281, 8917–8926 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Aoki, K. et al. An essential role for the SHIP2-dependent negative feedback loop in neuritogenesis of nerve growth factor-stimulated PC12 cells. J. Cell Biol. 177, 817–827 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bulina, M.E. et al. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Gordon, G.W. et al. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berney, C. & Danuser, G. FRET or no FRET: a quantitative comparison. Biophys. J. 84, 3992–4010 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeitelhofer, M. et al. High-efficiency transfection of mammalian neurons via nucleofection. Nat. Protoc. 2, 1692–1704 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    CAS  Google Scholar 

  47. Tsukada, Y. et al. Quantification of local morphodynamics and local GTPase activity by edge evolution tracking. PLoS. Comput. Biol. 4, e1000223 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Kitano and K. Kunida for providing the data of FRET imaging, and A. Nishiyama-Abe and Y. Kasakawa for their technical assistance. We are grateful to the members of the Matsuda laboratory for helpful discussions. This work was supported by Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, Japan, Sagawa Cancer Research Grant, and by the Kyoto University Global COE program Center for Frontier Medicine.

Author information

Authors and Affiliations

Authors

Contributions

K.A. assembled and analyzed data. K.A. and M.M. wrote the paper.

Corresponding author

Correspondence to Michiyuki Matsuda.

Supplementary information

Supplementary method 1

Journals for the use of Metamorph software (ZIP 67 kb)

Supplementary video 1

EGF-induced Ras activation. Cos7 cells expressing Raichu-Ras were serum starved for 6 h, and stimulated with 50 ng ml-1 EGF. FRET (upper left), CFP (upper right), and phase contrast images (PH, lower right) were acquired every 2 min. The FRET/CFP ratio image (lower left) was generated with images of CFP and YFP. (MOV 1191 kb)

Supplementary video 2

Rac1 activity in a stochastically migrating HT-1080 cell. HT-1080 cells expressing Raichu-Rac1 were replated onto collagen-coated glass bottom dishes. FRET, CFP, and phase images (PH, right) were acquired every 2 min. The FRET/CFP ratio image (left) was generated with images of CFP and FRET. (MOV 1028 kb)

Supplementary video 3

Cdc42 activity in a motile HT-1080 cell. HT-1080 cells expressing Raichu-Cdc42 were replated onto collagen-coated glass bottom dishes. FRET, CFP, and phase images (PH, right) were acquired every 2 min. The FRET/VFP image (left) was generated with images of CFP and FRET. (MOV 1402 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, K., Matsuda, M. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Nat Protoc 4, 1623–1631 (2009). https://doi.org/10.1038/nprot.2009.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.175

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing