Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications

Abstract

For more than 60 years, the chemical induction of tumors in mouse skin has been used to study mechanisms of epithelial carcinogenesis and evaluate modifying factors. In the traditional two-stage skin carcinogenesis model, the initiation phase is accomplished by the application of a sub-carcinogenic dose of a carcinogen. Subsequently, tumor development is elicited by repeated treatment with a tumor-promoting agent. The initiation protocol can be completed within 1–3 h depending on the number of mice used; whereas the promotion phase requires twice weekly treatments (1–2 h) and once weekly tumor palpation (1–2 h) for the duration of the study. Using the protocol described here, a highly reproducible papilloma burden is expected within 10–20 weeks with progression of a portion of the tumors to squamous cell carcinomas within 20–50 weeks. In contrast to complete skin carcinogenesis, the two-stage model allows for greater yield of premalignant lesions, as well as separation of the initiation and promotion phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-stage model of skin carcinogenesis in mice.
Figure 2: Expression of several marker proteins in each sequential stage of skin carcinogenesis in mice.
Figure 3: Representative data from a two-stage skin carcinogenesis study in FVB mice.

Similar content being viewed by others

References

  1. DiGiovanni, J. Multistage carcinogenesis in mouse skin. Pharmacol. Ther. 54, 63–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Kemp, C.J. Multistep skin cancer in mice as a model to study the evolution of cancer cells. Semin. Cancer Biol. 15, 460–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Verma, A.K., Wheeler, D.L., Aziz, M.H. & Manoharan, H. Protein kinase Cepsilon and development of squamous cell carcinoma, the nonmelanoma human skin cancer. Mol. Carcinog. 45, 381–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Bornstein, S., Hoot, K., Han, G.W., Lu, S.L. & Wang, X.J. Distinct roles of individual Smads in skin carcinogenesis. Mol. Carcinog. 46, 660–664 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, J. & Bowden, G.T. Targeting Bcl-X(L) for prevention and therapy of skin cancer. Mol. Carcinog. 46, 665–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, D.J., Chan, K.S., Sano, S. & DiGiovanni, J. Signal transducer and activator of transcription 3 (Stat3) in epithelial carcinogenesis. Mol. Carcinog. 46, 725–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Yuspa, S.H. The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis. J. Dermatol. Sci. 17, 1–7 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Yuspa, S.H. The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis–Thirty-third G. H. A. Clowes Memorial Award Lecture. Cancer Res. 54, 1178–1189 (1994).

    CAS  PubMed  Google Scholar 

  9. Slaga, T.J. Cellular and molecular mechanisms involved in multistage skin carcinogenesis. in Carcinogenesis: A comprehensive Survey Skin Tumors: Experimental and Clinical Aspects Vol. 11 (eds. Conti, C.J., Slaga, T.J. & Klein-Szanto, A.J.P.) 1–18 (Raven Press, New York, 1989).

    Google Scholar 

  10. Rundhaug, J.E. & Fischer, S.M. Tumor promoters and models of promotion. in Comprehensive Toxicology Vol. 12 (eds. Sipes, I.G., McQueen, C.A. & Gandolfi, A.J.) 325–348 (Elsevier Sciences Ltd., New York, 1997).

    Google Scholar 

  11. Kundu, J.K., Shin, Y.K. & Surh, Y.J. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets. Biochem. Pharmacol. 72, 1506–1515 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Fujiki, H., Atsumasa, K. & Suganuma, M. Chemoprevention of cancer. in Comprehensive Toxicology Vol. 12 (eds. Bowden, G.T. & Fischer, S.M.) 453–471 (Pergamon, Oxford, UK, 1997).

    Google Scholar 

  13. DiGiovanni, J. Modification of multistage skin carcinogenesis in mice. in Modification of Tumor Development in Rodents Vol. 33 (eds. Ito, N. & Sugano, H.) 192–229 (Karger, Basel, Switzerland, 1991).

    Google Scholar 

  14. Wilker, E. et al. Role of PI3K/Akt signaling in insulin-like growth factor-1 (IGF-1) skin tumor promotion. Mol. Carcinog. 44, 137–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Amornphimoltham, P., Leelahavanichkul, K., Molinolo, A., Patel, V. & Gutkind, J.S. Inhibition of Mammalian target of rapamycin by rapamycin causes the regression of carcinogen-induced skin tumor lesions. Clin. Cancer Res. 14, 8094–8101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown, K., Strathdee, D., Bryson, S., Lambie, W. & Balmain, A. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol. 8, 516–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Kemp, C.J., Donehower, L.A., Bradley, A. & Balmain, A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813–822 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Glick, A.B. et al. Targeted deletion of the TGF-beta 1 gene causes rapid progression to squamous cell carcinoma. Genes Dev. 8, 2429–2440 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Han, G. et al. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J. Clin. Invest. 115, 1714–1723 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsumoto, T. et al. Targeted expression of c-Src in epidermal basal cells leads to enhanced skin tumor promotion, malignant progression, and metastasis. Cancer Res. 63, 4819–4828 (2003).

    CAS  PubMed  Google Scholar 

  21. Chan, K.S. et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J. Clin. Invest. 114, 720–728 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rundhaug, J.E., Pavone, A., Kim, E. & Fischer, S.M. The effect of cyclooxygenase-2 overexpression on skin carcinogenesis is context dependent. Mol. Carcinog. 46, 981–992 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Segrelles, C. et al. Deregulated activity of Akt in epithelial basal cells induces spontaneous tumors and heightened sensitivity to skin carcinogenesis. Cancer Res. 67, 10879–10888 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Rundhaug, J.E. et al. Changes in protein expression during multistage mouse skin carcinogenesis. Mol. Carcinog. 20, 125–136 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Bassi, D.E. & Klein-Szanto, A.J.P. Carcinogen-induced animal models of head and neck squamous cell carcinoma. in Current Protocols in Pharmacology Supplement 37 14.12.11–14.12.19 (John Wiley & Sons, Hoboken, NJ, USA, 2007).

    Google Scholar 

  26. Ward, J.M., Rehm, S., Devor, D., Hennings, H. & Wenk, M.L. Differential carcinogenic effects of intraperitoneal initiation with 7,12-dimethylbenz(a)anthracene or urethane and topical promotion with 12-O-tetradecanoylphorbol-13-acetate in skin and internal tissues of female SENCAR and BALB/c mice. Environ. Health Perspect. 68, 61–68 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ise, K. et al. Targeted deletion of the H-ras gene decreases tumor formation in mouse skin carcinogenesis. Oncogene. 19, 2951–2956 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Pierceall, W.E., Kripke, M.L. & Ananthaswamy, H.N. N-ras mutation in ultraviolet radiation-induced murine skin cancers. Cancer Res. 52, 3946–3951 (1992).

    CAS  PubMed  Google Scholar 

  29. Rehman, I. et al. Frequent codon 12 Ki-ras mutations in mouse skin tumors initiated by N-methyl-N'-nitro-N-nitrosoguanidine and promoted by mezerein. Mol. Carcinog. 27, 298–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Nelson, M.A., Futscher, B.W., Kinsella, T., Wymer, J. & Bowden, G.T. Detection of mutant Ha-ras genes in chemically initiated mouse skin epidermis before the development of benign tumors. Proc. Natl. Acad. Sci. USA 89, 6398–6402 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Balmain, A., Ramsden, M., Bowden, G.T. & Smith, J. Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307, 658–660 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Brown, K., Buchmann, A. & Balmain, A. Carcinogen-induced mutations in the mouse c-Ha-ras gene provide evidence of multiple pathways for tumor progression. Proc. Natl. Acad. Sci. USA 87, 538–542 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Spalding, J.W., Momma, J., Elwell, M.R. & Tennant, R.W. Chemically induced skin carcinogenesis in a transgenic mouse line (TG.AC) carrying a v-Ha-ras gene. Carcinogenesis 14, 1335–1341 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Morris, R.J. A perspective on keratinocyte stem cells as targets for skin carcinogenesis. Differentiation 72, 381–386 (2004).

    Article  PubMed  Google Scholar 

  35. Klein-Szanto, A.J.P. Pathology of human and experimental skin tumors. in Skin Tumors: Experimental and Clinical Aspects (eds. Conti, C.J., Slaga, T.J. & Klein-Szanto, A.J.P.) 19–53 (Raven Press, New York, 1989).

    Google Scholar 

  36. Yuspa, S.H., Ben, T., Hennings, H. & Lichti, U. Divergent responses in epidermal basal cells exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 42, 2344–2349 (1982).

    CAS  PubMed  Google Scholar 

  37. Karen, J. et al. 12-O-tetradecanoylphorbol-13-acetate induces clonal expansion of potentially malignant keratinocytes in a tissue model of early neoplastic progression. Cancer Res. 59, 474–481 (1999).

    CAS  PubMed  Google Scholar 

  38. Hennings, H., Michael, D., Lichti, U. & Yuspa, S.H. Response of carcinogen-altered mouse epidermal cells to phorbol ester tumor promoters and calcium. J. Invest. Dermatol. 88, 60–65 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Parkinson, E.K. Defective responses of transformed keratinocytes to terminal differentiation stimuli. Their role in epidermal tumour promotion by phorbol esters and by deep skin wounding. Br. J. Cancer 52, 479–493 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woodworth, C.D. et al. Strain-dependent differences in malignant conversion of mouse skin tumors is an inherent property of the epidermal keratinocyte. Carcinogenesis 25, 1771–1778 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Gimenez-Conti, I.B., et al. Dissociation of sensitivities to tumor promotion and progression in outbred and inbred SENCAR mice. Cancer Res. 52, 3432–3435 (1992).

    CAS  PubMed  Google Scholar 

  42. Hennings, H. et al. FVB/N mice: an inbred strain sensitive to the chemical induction of squamous cell carcinomas in the skin. Carcinogenesis 14, 2353–2358 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Ewing, M.W., Conti, C.J., Kruszewski, F.H., Slaga, T.J. & DiGiovanni, J. Tumor progression in Sencar mouse skin as a function of initiator dose and promoter dose, duration, and type. Cancer Res. 48, 7048–7054 (1988).

    CAS  PubMed  Google Scholar 

  44. DuBowski, A. et al. Papillomas at high risk for malignant progression arising both early and late during two-stage carcinogenesis in SENCAR mice. Carcinogenesis 19, 1141–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Aldaz, C.M. & Conti, C.J. The premalignant nature of mouse skin papillomas: histopathologic, cytogenetic, and biochemical evidence. Carcinog. Compr. Surv. 11, 227–242 (1989).

    CAS  PubMed  Google Scholar 

  46. Aldaz, C.M., Conti, C.J., Klein-Szanto, A.J. & Slaga, T.J. Progressive dysplasia and aneuploidy are hallmarks of mouse skin papillomas: relevance to malignancy. Proc. Natl. Acad. Sci. USA 84, 2029–2032 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Conti, C.J., Aldaz, C.M., O'Connell, J., Klein-Szanto, A.J. & Slaga, T.J. Aneuploidy, an early event in mouse skin tumor development. Carcinogenesis 7, 1845–1848 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Ruggeri, B. et al. Alterations of the p53 tumor suppressor gene during mouse skin tumor progression. Cancer Res. 51, 6615–6621 (1991).

    CAS  PubMed  Google Scholar 

  49. Aldaz, C.M., Trono, D., Larcher, F., Slaga, T.J. & Conti, C.J. Sequential trisomization of chromosomes 6 and 7 in mouse skin premalignant lesions. Mol. Carcinog. 2, 22–26 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Chan, K.S. et al. Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene 27, 1087–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Navarro, P. et al. A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J. Cell. Biol. 115, 517–533 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Caulin, C., Bauluz, C., Gandarillas, A., Cano, A. & Quintanilla, M. Changes in keratin expression during malignant progression of transformed mouse epidermal keratinocytes. Exp. Cell. Res. 204, 11–21 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Hennings, H. et al. Malignant conversion and metastasis of mouse skin tumors: a comparison of SENCAR and CD-1 mice. Environ. Health Perspect. 68, 69–74 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boutwell, R.K. Some biological aspects of skin carcinogenesis. Prog. Exp. Tumor Res. 4, 207–250 (1964).

    Article  CAS  PubMed  Google Scholar 

  55. Digiovanni, J. Genetic Determinants of Susceptibility to Mouse Skin Tumor Promotions in Inbred Mice (Marcel Dekker, Inc., New York, 1989).

    Google Scholar 

  56. Mahler, K.L. et al. Sequence divergence of Mus spretus and Mus musculus across a skin cancer susceptibility locus. BMC Genomics 9, 626 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mock, B.A. et al. Multigenic control of skin tumor susceptibility in SENCARA/Pt mice. Carcinogenesis 19, 1109–1115 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Nagase, H. et al. Distinct genetic loci control development of benign and malignant skin tumours in mice. Nat. Genet. 10, 424–429 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Fujiwara, K., Igarashi, J., Irahara, N., Kimura, M. & Nagase, H. New chemically induced skin tumour susceptibility loci identified in a mouse backcross between FVB and dominant resistant PWK. BMC Genet. 8, 39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peissel, B. et al. Use of intercross outbred mice and single nucleotide polymorphisms to map skin cancer modifier loci. Mamm. Genome. 12, 291–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Angel, J.M., Caballero, M. & DiGiovanni, J. Identification of novel genetic loci contributing to 12-O-tetradecanoylphorbol-13-acetate skin tumor promotion susceptibility in DBA/2 and C57BL/6 mice. Cancer Res. 63, 2747–2751 (2003).

    CAS  PubMed  Google Scholar 

  62. Angel, J.M. & DiGiovanni, J. Genetics of skin tumor promotion. Prog. Exp. Tumor Res. 35, 143–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. de Koning, J.P., Wakabayashi, Y., Nagase, H., Mao, J.H. & Balmain, A. Convergence of congenic mapping and allele-specific alterations in tumors for the resolution of the Skts1 skin tumor susceptibility locus. Oncogene 26, 4171–4178 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. DiGiovanni, J. Role of transforming growth factor-a and the epidermal growth factor receptor in multistage mouse skin carcinogenesis. in Skin Cancer: Mechanisms and Human Relevance (ed. Mukhtar, H.) 181–197 (CRC Press, Inc., Boca Raton, FL, 1995).

    Google Scholar 

  65. DiGiovanni, J., Bhatt, T.S. & Walker, S.E. C57BL/6 mice are resistant to tumor promotion by full thickness skin wounding. Carcinogenesis 14, 319–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. DiGiovanni, J., Walker, S.C., Beltran, L., Naito, M. & Eastin Jr., W.C. Evidence for a common genetic pathway controlling susceptibility to mouse skin tumor promotion by diverse classes of promoting agents. Cancer Res. 51, 1398–1405 (1991).

    CAS  PubMed  Google Scholar 

  67. Imamoto, A. et al. Comparison of 12-O-tetradecanoylphorbol-13-acetate and teleocidin for induction of epidermal hyperplasia, activation of epidermal PKC isozymes and skin tumor promotion in SENCAR and C57BL/6 mice. Carcinogenesis 14, 719–724 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5, 744–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Leedham, S.J. & Wright, N.A. Expansion of a mutated clone: from stem cell to tumour. J. Clin. Pathol. 61, 164–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Wistuba, I.I. et al. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 18, 643–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Segditsas, S. et al. APC and the three-hit hypothesis. Oncogene 28, 146–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Kangsamaksin, T., Park, H.J., Trempus, C.S. & Morris, R.J. A perspective on murine keratinocyte stem cells as targets of chemically induced skin cancer. Mol. Carcinog. 46, 579–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Trempus, C.S. et al. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res. 67, 4173–4181 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rundhaug, J.E., Fuscher, S.M. & Bowden, G.T. Tumor Promoters and Models of Promotion. in Comprehensive Toxicology Vol. 12 (eds. Bowden, G.T. & Fischer, S.M.) 325–347 (Pergamon, Oxford, UK, 1997).

    Google Scholar 

  77. Pitot, H.C. & Dragan, Y.P. Facts and theories concerning the mechanisms of carcinogenesis. FASEB J. 5, 2280–2286 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Klein, E.A. Can prostate cancer be prevented? Nat. Clin. Pract. Urol. 2, 24–31 (2005).

    Article  PubMed  Google Scholar 

  79. Chen, J. & Roop, D.R. Genetically engineered mouse models for skin research: taking the next step. J. Dermatol. Sci. 52, 1–12 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kleiner, H.E., Vulimiri, S.V., Starost, M.F., Reed, M.J. & DiGiovanni, J. Oral administration of the citrus coumarin, isopimpinellin, blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene in SENCAR mice. Carcinogenesis 23, 1667–1675 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Gills, J.J. et al. Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett. 236, 72–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Singh, R.P., Tyagi, A.K., Zhao, J. & Agarwal, R. Silymarin inhibits growth and causes regression of established skin tumors in SENCAR mice via modulation of mitogen-activated protein kinases and induction of apoptosis. Carcinogenesis 23, 499–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Birt, D.F., Pinch, H.J., Barnett, T., Phan, A. & Dimitroff, K. Inhibition of skin tumor promotion by restriction of fat and carbohydrate calories in SENCAR mice. Cancer Res. 53, 27–31 (1993).

    CAS  PubMed  Google Scholar 

  84. Moore, T. et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prev. Res. (Phila Pa) 1, 65–76 (2008).

    Article  CAS  Google Scholar 

  85. Stewart, J.W. et al. Prevention of mouse skin tumor promotion by dietary energy restriction requires an intact adrenal gland and glucocorticoid supplementation restores inhibition. Carcinogenesis 26, 1077–1084 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Benjamin, C.L. & Ananthaswamy, H.N. p53 and the pathogenesis of skin cancer. Toxicol. Appl. Pharmacol. 224, 241–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  88. Kwei, K.A., Finch, J.S., Ranger-Moore, J. & Bowden, G.T. The role of Rac1 in maintaining malignant phenotype of mouse skin tumor cells. Cancer Lett. 231, 326–338 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Hirakawa, S. et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109, 1010–1017 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Casanova, M.L. et al. A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis. Cancer Res. 62, 3402–3407 (2002).

    CAS  PubMed  Google Scholar 

  91. Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201, 1089–1099 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hoot, K.E. et al. Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J. Clin. Invest. 118, 2722–2732 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Naito, M., Naito, Y. & DiGiovanni, J. Comparison of the histological changes in the skin of DBA/2 and C57BL/6 mice following exposure to various promoting agents. Carcinogenesis 8, 1807–1815 (1987).

    Article  CAS  PubMed  Google Scholar 

  94. DiGiovanni, J. et al. Further genetic analyses of skin tumor promoter susceptibility using inbred and recombinant inbred mice. Carcinogenesis 13, 525–531 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Stern, M.C. et al. Analysis of two inbred strains of mice derived from the SENCAR stock with different susceptibility to skin tumor progression. Carcinogenesis 19, 125–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. DiGiovanni, J., Slaga, T.J. & Boutwell, R.K. Comparison of the tumor-initiating activity of 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene in female SENCAR and CD-1 mice. Carcinogenesis 1, 381–389 (1980).

    Article  CAS  PubMed  Google Scholar 

  97. Boutwell, R.K. The biochemistry of preneoplasia in mouse skin. Cancer Res. 36, 2631–2635 (1976).

    CAS  PubMed  Google Scholar 

  98. Slaga, T.J. Overview of tumor promotion in animals. Environ. Health Perspect. 50, 3–14 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Slaga, T. & Nesnow, S. SENCAR mouse skin tumorigenesis. in Handbook of Carcinogen Testing (eds. Milman, H.A. & Weisburger, E.K.) 230–250 (Noyes Publication, Park Ridge, IL, 1985).

    Google Scholar 

  100. Markel, P. et al. Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat. Genet. 17, 280–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Haseman, J.K. Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58, 385–392 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Festing, M.F. Design and statistical methods in studies using animal models of development. ILAR J. 47, 5–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Subcommittee on Laboratory Animal Nutrition, C.o.A.N., Board on Agriculture, National Research Council. Nutrient Requirements of Laboratory Animals, (National Academy Press, Washington, DC, 1995).

  104. Virador, V.M. et al. The human promyelocytic leukemia protein is a tumor suppressor for murine skin carcinogenesis. Mol. Carcinog. 48, 599–609 (2008).

    Article  CAS  Google Scholar 

  105. Santos, M. et al. Susceptibility of pRb-deficient epidermis to chemical skin carcinogenesis is dependent on the p107 allele dosage. Mol. Carcinog. 47, 815–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Roop, D.R., Krieg, T.M., Mehrel, T., Cheng, C.K. & Yuspa, S.H. Transcriptional control of high molecular weight keratin gene expression in multistage mouse skin carcinogenesis. Cancer Res. 48, 3245–3252 (1988).

    CAS  PubMed  Google Scholar 

  107. Nischt, R. et al. Aberrant expression during two-stage mouse skin carcinogenesis of a type I 47-kDa keratin, K13, normally associated with terminal differentiation of internal stratified epithelia. Mol. Carcinog. 1, 96–108 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Gimenez-Conti, I. et al. Early expression of type I K13 keratin in the progression of mouse skin papillomas. Carcinogenesis 11, 1995–1999 (1990).

    Article  CAS  PubMed  Google Scholar 

  109. Aldaz, C.M. et al. Sequential development of aneuploidy, keratin modifications, and gamma-glutamyltransferase expression in mouse skin papillomas. Cancer Res. 48, 3253–3257 (1988).

    CAS  PubMed  Google Scholar 

  110. Diaz-Guerra, M. et al. Expression of simple epithelial cytokeratins in mouse epidermal keratinocytes harboring Harvey ras gene alterations. Cancer Res. 52, 680–687 (1992).

    CAS  PubMed  Google Scholar 

  111. Larcher, F. et al. Aberrant expression of the simple epithelial type II keratin 8 by mouse skin carcinomas but not papillomas. Mol. Carcinog. 6, 112–121 (1992).

    Article  CAS  PubMed  Google Scholar 

  112. Mehrel, T. et al. Identification of a major keratinocyte cell envelope protein, loricrin. Cell 61, 1103–1112 (1990).

    Article  CAS  PubMed  Google Scholar 

  113. Steven, A.C., Bisher, M.E., Roop, D.R. & Steinert, P.M. Biosynthetic pathways of filaggrin and loricrin–two major proteins expressed by terminally differentiated epidermal keratinocytes. J. Struct. Biol. 104, 150–162 (1990).

    Article  CAS  PubMed  Google Scholar 

  114. Bickenbach, J.R., Greer, J.M., Bundman, D.S., Rothnagel, J.A. & Roop, D.R. Loricrin expression is coordinated with other epidermal proteins and the appearance of lipid lamellar granules in development. J. Invest. Dermatol. 104, 405–410 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Chiba, M., Maley, M.A. & Klein-Szanto, A.J. Sequential study of gamma-glutamyltransferase during complete and two-stage mouse skin carcinogenesis. Cancer Res. 46, 259–263 (1986).

    CAS  PubMed  Google Scholar 

  116. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–627 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Margulis, A. et al. Loss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinoma. Int. J. Cancer 118, 821–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Brouxhon, S. et al. Sequential down-regulation of E-cadherin with squamous cell carcinoma progression: loss of E-cadherin via a prostaglandin E2-EP2 dependent posttranslational mechanism. Cancer Res. 67, 7654–7664 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Holden, P.R., McGuire, B., Stoler, A., Balmain, A. & Pitts, J.D. Changes in gap junctional intercellular communication in mouse skin carcinogenesis. Carcinogenesis 18, 15–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Kim, D.J. et al. Targeted disruption of Bcl-x(L) in mouse keratinocytes inhibits both UVB- and chemically induced skin carcinogenesis. Mol. Carcinog. 23 March 2009 (Epub ahead of print).

  121. Darwiche, N. et al. Expression profile of skin papillomas with high cancer risk displays a unique genetic signature that clusters with squamous cell carcinomas and predicts risk for malignant conversion. Oncogene 26, 6885–6895 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Hennings, H., Shores, R., Mitchell, P., Spangler, E.F. & Yuspa, S.H. Induction of papillomas with a high probability of conversion to malignancy. Carcinogenesis 6, 1607–1610 (1985).

    Article  CAS  PubMed  Google Scholar 

  123. Hennings, H. et al. Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters. Nature 304, 67–69 (1983).

    Article  CAS  PubMed  Google Scholar 

  124. Hennings, H. et al. Enhanced malignant conversion of benign mouse skin tumors by cisplatin. J. Natl. Cancer Inst. 82, 836–840 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. Abel, E. & DiGiovanni, J. Environmental carcinogenesis. in The Molecular Basis of Cancer (eds. Mendelsohn, J., Howley, P.M., Israel, M., Gray, J.W. & Thompson, C.B.) 91–113 (Elsevier, Philadelphia, 2008).

    Chapter  Google Scholar 

  126. DiGiovanni, J., Kruszewski, F.H. & Chenicek, K.J. Modulation of chrysarobin skin tumor promotion. Carcinogenesis 9, 1445–1450 (1988).

    Article  CAS  PubMed  Google Scholar 

  127. Slaga, T.J. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice. Environ. Health Perspect. 68, 27–32 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Reiners Jr., J.J. & Singh, K.P. Susceptibility of 129/SvEv mice in two-stage carcinogenesis protocols to 12-O-tetradecanoylphorbol-13-acetate promotion. Carcinogenesis 18, 593–597 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Naito, M. & DiGiovanni, J. Genetic background and development of skin tumors. Carcinog. Compr. Surv. 11, 187–212 (1989).

    CAS  PubMed  Google Scholar 

  130. Naito, M., Chenicek, K.J., Naito, Y. & DiGiovanni, J. Susceptibility to phorbol ester skin tumor promotion in (C57BL/6 × DBA/2) F1 mice is inherited as an incomplete dominant trait: evidence for multi-locus involvement. Carcinogenesis 9, 639–645 (1988).

    Article  CAS  PubMed  Google Scholar 

  131. Sundberg, J.P., Sundberg, B.A. & Beamer, W.G. Comparison of chemical carcinogen skin tumor induction efficacy in inbred, mutant, and hybrid strains of mice: morphologic variations of induced tumors and absence of a papillomavirus cocarcinogen. Mol. Carcinog. 20, 19–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Bol, D.K. et al. Cyclooxygenase-2 overexpression in the skin of transgenic mice results in suppression of tumor development. Cancer Res. 62, 2516–2521 (2002).

    CAS  PubMed  Google Scholar 

  133. Moore, T. et al. Reduced susceptibility to two-stage skin carcinogenesis in mice with low circulating insulin-like growth factor I levels. Cancer Res. 68, 3680–3688 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants ES015718, ES016623, CA076520, CA37111, CA016672 and the National Institute of Environmental Health Sciences Center Grant ES007784. We would like to thank the Histology and Tissue Processing Core Facility for their technical assistance in immunohistochemical analyses and Dr. J. Rundhaug for providing tumor samples. We also thank S. Johnson for her assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.L.A. and J.D. were responsible for overall manuscript writing including compilation of the supporting data and procedure descriptions. J.M.A. was responsible for compiling and describing the data in Table 1. K.K. was responsible for creating and describing the results of Figure 2. Numerous laboratory groups and individuals have contributed to the design and refinement of the two-stage skin carcinogenesis protocol in mice.

Corresponding author

Correspondence to John DiGiovanni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abel, E., Angel, J., Kiguchi, K. et al. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications. Nat Protoc 4, 1350–1362 (2009). https://doi.org/10.1038/nprot.2009.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.120

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing