Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry

Abstract

The success in profiling the phosphoproteome by mass spectrometry-based proteomics has been intimately related to the availability of methods that selectively enrich for phosphopeptides. To this end, we describe a protocol that combines two sequential enrichment steps. First, strong cation exchange (SCX) chromatography separates peptides by solution charge. Phosphate groups contribute to solution charge by adding a negative charge at pH 2.7. Therefore, at that pH, phosphopeptides are expected to elute earlier than their nonphosphorylated homologs. Second, immobilized metal affinity chromatography (IMAC) takes advantage of phosphate's affinity for metal ions such as Fe3+ to uniformly enrich for phosphopeptides from the previously collected SCX fractions. We have successfully employed the SCX/IMAC enrichment strategy in the exploration of phosphoproteomes from several systems including mouse liver and Drosophila embryos characterizing over 5,500 and 13,000 phosphorylation events, respectively. The SCX/IMAC enrichment protocol requires 2 days, and the entire procedure from cells to a phosphorylation data set can be completed in less than 10 days.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams illustrating the protocol.
Figure 2: Performance of semipreparative SCX chromatography.
Figure 3: Enrichment obtained after each step represented as the fraction of phosphopeptides over all the peptides identified.
Figure 4: Phosphopeptide distributions.
Figure 5: Contribution of mass accuracy to phosphopeptide identification rates.

Similar content being viewed by others

References

  1. Hastie, C.J., McLauchlan, H.J. & Cohen, P. Assay of protein kinases using radiolabeled ATP: a protocol. Nat. Protoc. 1, 968–971 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Collins, M.O., Yu, L. & Choudhary, J.S. Analysis of protein phosphorylation on a proteome-scale. Proteomics 7, 2751–2768 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hunter, T. & Cooper, J.A. Protein-tyrosine kinases. Annu. Rev. Biochem. 54, 897–930 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Andersson, L. & Porath, J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 154, 250–254 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Posewitz, M.C. & Tempst, P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 71, 2883–2892 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Pinkse, M.W., Uitto, P.M., Hilhorst, M.J., Ooms, B. & Heck, A.J. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 76, 3935–3943 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Sano, A. & Nakamura, H. Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides: application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Anal. Sci. 20, 861–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Kweon, H.K. & Hakansson, K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem. 78, 1743–1749 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Holmes, C.F. A new method for the selective isolation of phosphoserine-containing peptides. FEBS Lett. 215, 21–24 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Beausoleil, S.A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, X. et al. Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J. Proteome Res. 6, 1190–1197 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Wilson-Grady, J.T., Villen, J. & Gygi, S.P. Phosphoproteome analysis of fission yeast. J. Proteome Res. 7, 1088–1097 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Gruhler, A. et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics 4, 310–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Trinidad, J.C., Specht, C.G., Thalhammer, A., Schoepfer, R. & Burlingame, A.L. Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol. Cell. Proteomics 5, 914–922 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Villen, J., Beausoleil, S.A., Gerber, S.A. & Gygi, S.P. Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad. Sci. USA 104, 1488–1493 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhai, B., Villen, J., Beausoleil, S.A., Mintseris, J. & Gygi, S.P. Phosphoproteome analysis of Drosophila melanogaster embryos. J. Proteome Res. 7, 1675–1682 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Pinkse, M.W. et al. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. J. Proteome Res. 7, 687–697 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, J., Shakey, Q., Liu, W., Schuller, A. & Follettie, M.T. Global profiling of phosphopeptides by titania affinity enrichment. J. Proteome Res. 6, 4684–4689 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Mazanek, M. et al. Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nat. Protoc. 2, 1059–1069 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Thingholm, T.E., Jorgensen, T.J., Jensen, O.N. & Larsen, M.R. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 1, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Bakalarski, C.E., Haas, W., Dephoure, N.E. & Gygi, S.P. The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics. Anal. Bioanal. Chem. 389, 1409–1419 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Eng, J.K., McCormack, A.L. & Yates, J.R. III. An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J. & Gygi, S.P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Haas, W. et al. Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol. Cell Proteomics 5, 1326–1337 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Albuquerque, C.P. et al. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol. Cell. Proteomics 7, 1389–1396 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bodenmiller, B. et al. PhosphoPep—a phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Mol. Syst. Biol. 3, 139 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zarling, A.L. et al. Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. J. Exp. Med. 192, 1755–1762 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stensballe, A., Jensen, O.N., Olsen, J.V., Haselmann, K.F. & Zubarev, R.A. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom. 14, 1793–1800 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Chi, A. et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. USA 104, 2193–2198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schroeder, M.J., Shabanowitz, J., Schwartz, J.C., Hunt, D.F. & Coon, J.J. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal. Chem. 76, 3590–3598 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Andrew Alpert from PolyLC for kindly providing columns for SCX chromatography and Manuel Rodriguez-Falcon for the initial tests of the combined IMAC-desalting procedure. We are also grateful to Joshua T. Wilson-Grady for constructive comments on the manuscript. This work was supported by NIH grant HG3456 to S.P.G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Judit Villén or Steven P Gygi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villén, J., Gygi, S. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3, 1630–1638 (2008). https://doi.org/10.1038/nprot.2008.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.150

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing