Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of NMDA receptor trafficking by amyloid-β

Abstract

Amyloid-β peptide is elevated in the brains of patients with Alzheimer disease and is believed to be causative in the disease process. Amyloid-β reduces glutamatergic transmission and inhibits synaptic plasticity, although the underlying mechanisms are unknown. We found that application of amyloid-β promoted endocytosis of NMDA receptors in cortical neurons. In addition, neurons from a genetic mouse model of Alzheimer disease expressed reduced amounts of surface NMDA receptors. Reducing amyloid-β by treating neurons with a γ-secretase inhibitor restored surface expression of NMDA receptors. Consistent with these data, amyloid-β application produced a rapid and persistent depression of NMDA-evoked currents in cortical neurons. Amyloid-β–dependent endocytosis of NMDA receptors required the α-7 nicotinic receptor, protein phosphatase 2B (PP2B) and the tyrosine phosphatase STEP. Dephosphorylation of the NMDA receptor subunit NR2B at Tyr1472 correlated with receptor endocytosis. These data indicate a new mechanism by which amyloid-β can cause synaptic dysfunction and contribute to Alzheimer disease pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amyloid-β1–42 promotes endocytosis of glutamate receptor subunits.
Figure 2: Amyloid-β (Aβ) reduces synaptic NMDA receptors.
Figure 3: Naturally secreted amyloid-β reduces surface NMDA receptors.
Figure 4: Amyloid-β reduces surface expression of NMDA receptors through α-7 nicotinic receptors and PP2B.
Figure 5: Amyloid-β promotes dephosphorylation of STEP, which controls glutamate receptor trafficking.
Figure 6: Amyloid-β depresses NMDA receptor (NMDAR) currents.
Figure 7: Amyloid-β reduces NMDA-induced CREB phosphorylation.

Similar content being viewed by others

References

  1. Perdahl, E., Wu, W.C., Browning, M.D., Winblad, B. & Greengard, P. Protein III, a neuron-specific phosphoprotein: variant forms found in human brain. Neurobehav. Toxicol. Teratol. 6, 425–431 (1984).

    CAS  PubMed  Google Scholar 

  2. Terry, R.D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, R.H. et al. Oligomerization of Alzheimer's β-amyloid within processes and synapses of cultured neurons and brain. J. Neurosci. 24, 3592–3599 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Selkoe, D.J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Chapman, P.F. et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Freir, D.B., Holscher, C. & Herron, C.E. Blockade of long-term potentiation by β-amyloid peptides in the CA1 region of the rat hippocampus in vivo. J. Neurophysiol. 85, 708–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, J.H., Anwyl, R., Suh, Y.H., Djamgoz, M.B. & Rowan, M.J. Use-dependent effects of amyloidogenic fragments of (β)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J. Neurosci. 21, 1327–1333 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malenka, R.C. Synaptic plasticity and AMPA receptor trafficking. Ann. NY Acad. Sci. 1003, 1–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Naslund, J. et al. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. J. Am. Med. Assoc. 283, 1571–1577 (2000).

    Article  CAS  Google Scholar 

  11. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Snyder, E.M. et al. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat. Neurosci. 4, 1079–1085 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Roche, K.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4, 794–802 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nong, Y. et al. Glycine binding primes NMDA receptor internalization. Nature 422, 302–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Scott, D.B., Michailidis, I., Mu, Y., Logothetis, D. & Ehlers, M.D. Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J. Neurosci. 24, 7096–7109 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mammen, A.L., Huganir, R.L. & O'Brien, R.J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rao, A. & Craig, A.M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Cai, D. et al. Presenilin-1 regulates intracellular trafficking and cell surface delivery of β-amyloid precursor protein. J. Biol. Chem. 278, 3446–3454 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, H.Y. et al. β-Amyloid(1–42) binds to α7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J. Biol. Chem. 275, 5626–5632 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Dineley, K.T. et al. β-amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci. 21, 4125–4133 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levy, R.B. & Aoki, C. α7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. J. Neurosci. 22, 5001–5015 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi, J., Townsend, M. & Constantine-Paton, M. Activity-dependent induction of tonic calcineurin activity mediates a rapid developmental downregulation of NMDA receptor currents. Neuron 28, 103–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Stevens, T.R., Krueger, S.R., Fitzsimonds, R.M. & Picciotto, M.R. Neuroprotection by nicotine in mouse primary cortical cultures involves activation of calcineurin and L-type calcium channel inactivation. J. Neurosci. 23, 10093–10099 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, Y.T. & Salter, M.W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Vissel, B., Krupp, J.J., Heinemann, S.F. & Westbrook, G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci. 4, 587–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Pelkey, K.A. et al. Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 34, 127–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Paul, S., Nairn, A.C., Wang, P. & Lombroso, P.J. NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci. 6, 34–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Lavezzari, G., McCallum, J., Lee, R. & Roche, K.W. Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology 45, 729–737 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Tong, L., Thornton, P.L., Balazs, R. & Cotman, C.W. β-amyloid-(1–42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. J. Biol. Chem. 276, 17301–17306 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Shieh, P.B., Hu, S.C., Bobb, K., Timmusk, T. & Ghosh, A. Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20, 727–740 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Tao, X., Finkbeiner, S., Arnold, D.B., Shaywitz, A.J. & Greenberg, M.E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Riccio, A., Ahn, S., Davenport, C.M., Blendy, J.A. & Ginty, D.D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Taubenfeld, S.M., Milekic, M.H., Monti, B. & Alberini, C.M. The consolidation of new but not reactivated memory requires hippocampal C/EBPβ. Nat. Neurosci. 4, 813–818 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto-Sasaki, M., Ozawa, H., Saito, T., Rosler, M. & Riederer, P. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res. 824, 300–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Valjent, E. et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl. Acad. Sci. USA 102, 491–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Alvestad, R.M. et al. Tyrosine dephosphorylation and ethanol inhibition of N-methyl-D-aspartate receptor function. J. Biol. Chem. 278, 11020–11025 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Greenberg for the gift of phospho-NR2B antibody and G. Thinakaran and S. Sisodia for the gift of stably transfected N2A cells. We also thank J. Shepherd and members of the Greengard and Gouras labs for helpful discussions. This work was supported by the Fisher Foundation for Alzheimer's Research, US National Institutes of Health grant AG09464 (P.G.T. and G.K.G.) and National Institute of Mental Health grant 52711 and 01527 (P.J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M Snyder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Methyllycaconitine (MLA) inhibits the effect of amyloid-β on NMDA receptors. (PDF 478 kb)

Supplementary Fig. 2

Model of amyloid-β regulation of glutamate receptor trafficking. (PDF 1752 kb)

Supplementary Methods (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, E., Nong, Y., Almeida, C. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 8, 1051–1058 (2005). https://doi.org/10.1038/nn1503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing