Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors

Abstract

Regulation of AMPA receptor (AMPAR) trafficking is important for neural plasticity. Here we examined the trafficking and synthesis of the GluR1 and GluR2 subunits using ReAsH-EDT2 and FlAsH-EDT2 staining. Activity blockade of rat cultured neurons increased dendritic GluR1, but not GluR2, levels. Examination of transected dendrites revealed that both AMPAR subunits were synthesized in dendrites and that activity blockade enhanced dendritic synthesis of GluR1 but not GluR2. In contrast, acute pharmacological manipulations increased dendritic synthesis of both subunits. AMPARs synthesized in dendrites were inserted into synaptic plasma membranes and, after activity blockade, the electrophysiological properties of native synaptic AMPARs changed in the manner predicted by the imaging experiments. In addition to providing a novel mechanism for synaptic modifications, these results point out the advantages of using FlAsH-EDT2 and ReAsH-EDT2 for studying the trafficking of newly synthesized proteins in local cellular compartments such as dendrites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ReAsH-EDT2 and FlAsH-EDT2 are not toxic and specifically stain tetracysteine-tagged GluR1 and GluR2.
Figure 2: Characterization of basal AMPAR subunit trafficking.
Figure 3: Chronic activity blockade increased dendritic levels, but not the rate of transport, of GluR1.
Figure 4: Local synthesis of AMPAR subunits occurs in isolated dendrites.
Figure 5: Chronic activity blockade enhances local dendritic synthesis of GluR1.
Figure 6: A decrease in lysosome-mediated degradation does not account for the increase in GluR1 following activity blockade.
Figure 7: Acute treatments increase local dendritic synthesis of both GluR1 and GluR2.
Figure 8: Chronic activity blockade enhances synaptic localization of GluR1 in isolated dendrites and changes the subunit composition of native synaptic AMPARs.

Similar content being viewed by others

References

  1. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Steward, O. & Schuman, E.M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Job, C. & Eberwine, J. Localization and translation of mRNA in dendrites and axons. Nat. Rev. Neurosci. 2, 889–898 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Turrigiano, G.G. & Nelson, S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Braithwaite, S.P., Meyer, G. & Henley, J.M. Interactions between AMPA receptors and intracellular proteins. Neuropharmacol. 39, 919–930 (2000).

    Article  CAS  Google Scholar 

  9. Passafaro, M., Piech, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Marek, K.W. & Davis, G.W. Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36, 805–813 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Borgdorff, A.J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature 417, 649–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Washbourne, P., Bennett, J.E. & McAllister, A.K. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nat. Neurosci. 5, 751–759 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. O'Brien, R.J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Miyashiro, K., Dichter, M. & Eberwine, J. On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning. Proc. Natl. Acad. Sci. USA 91, 10800–10804 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kacharmina, J.E., Job, C., Crino, P. & Eberwine, J. Stimulation of glutamate receptor protein synthesis and membrane insertion within isolated neuronal dendrites. Proc. Natl. Acad. Sci. USA 97, 11545–11550 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martone, M.E., Pollock, J.A., Jones, Y.Z. & Ellisman, M.H. Ultrastructural localization of dendritic messenger RNA in adult rat hippocampus. J. Neurosci. 16, 7437–7446 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci, 6, 231–242 (2003).

    Article  CAS  Google Scholar 

  19. Weiler, I.J. & Greenough, W.T. Metabotropic glutamate receptors trigger postsynaptic protein synthesis. Proc. Natl. Acad. Sci. USA 90, 7168–7171 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pickard, L. et al. Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacol. 41, 700–713 (2001).

    Article  CAS  Google Scholar 

  21. Lissin, D.V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  23. Washburn, M.S., Numberger, M., Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J. Neurosci. 17, 9393–9406 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mainen, Z.F., Jia, Z., Roder, J. & Malinow, R. Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression. Nat. Neurosci. 1, 579–586 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Craig, A.M., Blackstone, C.D., Huganir, R.L. & Banker, G. The distribution of glutamate receptors in cultured rat hippocampal neurons: postsynaptic clustering of AMPA-selective subunits. Neuron 10, 1055–1068 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Benson, D.L. Dendritic compartmentation of NMDA receptor mRNA in cultured hippocampal neurons. Neuroreport 8, 823–828 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Spacek, J. & Harris, K.M. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17, 190–203 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gardiol, A., Racca, C. & Triller, A. Dendritic and postsynaptic protein synthetic machinery. J. Neurosci. 19, 168–179 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pierce, J.P., van Leyen, K. & McCarthy, J.B. Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines. Nat. Neurosci. 3, 311–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Horton, A.C. & Ehlers, M.D. Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J. Neurosci. 23, 6188–6199 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Torre, E.R. & Steward, O. Protein synthesis within dendrites: glycosylation of newly synthesized proteins in dendrites of hippocampal neurons in culture. J. Neurosci. 16, 5967–5978 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sigrist, S.J. et al. Postsynaptic translation affects the efficacy and morphology of neuromuscular junctions. Nature 405, 1062–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Steward, O. mRNA at synapses, synaptic plasticity, and memory consolidation. Neuron 36, 338–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Jia, Z. et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Meng, Y., Zhang, Y. & Jia, Z. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 39, 163–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Lüscher, C., Nicoll, R.A., Malenka, R.C. & Muller, D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3, 545–550 (2000).

    Article  PubMed  Google Scholar 

  37. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Fisher and E. Saura for technical assistance and members of the Malenka and Garner labs for suggestions. cDNAs were gifts from M. Sheng (AMPAR subunits), Z. Jia (AMPAR subunits), H. Schulman (α and βCaMKII) and M. Mayford (α and βCaMKII). This work was supported by grants from the National Institutes of Health (R.C.M., MH63394; R.Y.T., NS27177; M.E., P41-RR04050) and Howard Hughes Medical Institute (R.Y.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C Malenka.

Ethics declarations

Competing interests

R.Y. Tsien is co-inventor on the patents for FlAsH and ReAsH, which the University of California has licensed, and will receive a share of any royalties that the University of California collects. He has no financial relationship with Invitrogen, the company that is now commercializing these reagents.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, W., Morishita, W., Tsui, J. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7, 244–253 (2004). https://doi.org/10.1038/nn1189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing