Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic spine pathology in neuropsychiatric disorders

Abstract

Substantial progress has been made toward understanding the genetic architecture, cellular substrates, brain circuits and endophenotypic profiles of neuropsychiatric disorders, including autism spectrum disorders (ASD), schizophrenia and Alzheimer's disease. Recent evidence implicates spiny synapses as important substrates of pathogenesis in these disorders. Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of spine pathology may provide insight into their etiologies and may reveal new drug targets. Here we discuss recent neuropathological, genetic, molecular and animal model studies that implicate structural alterations at spiny synapses in the pathogenesis of major neurological disorders, focusing on ASD, schizophrenia and Alzheimer's disease as representatives of these categories across different ages of onset. We stress the importance of reverse translation, collaborative and multidisciplinary approaches, and the study of the spatio-temporal roles of disease molecules in the context of synaptic regulatory pathways and neuronal circuits that underlie disease endophenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative lifetime trajectory of dendritic spine number in the in a normal subject (black), in ASD (pink), in schizophrenia (SZ, green) and in Alzheimer's disease (AD) (blue).
Figure 2: Model of molecular mechanisms of spine pathology in ASD.
Figure 3: Model of molecular mechanisms contributing to spine dysfunction in schizophrenia.
Figure 4: Model of molecular mechanisms involved in spine pathology in Alzheimer's disease.

Similar content being viewed by others

References

  1. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A. & Noguchi, J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33, 121–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Selemon, L.D. & Goldman-Rakic, P.S. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol. Psychiatry 45, 17–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Hutsler, J.J. & Zhang, H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309, 83–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Glantz, L.A. & Lewis, D.A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Tackenberg, C., Ghori, A. & Brandt, R. Thin, stubby or mushroom: spine pathology in Alzheimer's disease. Curr. Alzheimer Res. 6, 261–268 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Selkoe, D.J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Toro, R. et al. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet. 26, 363–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Kaufmann, W.E. & Moser, H.W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10, 981–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Geschwind, D.H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Irwin, S.A. et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am. J. Med. Genet. 98, 161–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Gogtay, N. Cortical brain development in schizophrenia: insights from neuroimaging studies in childhood-onset schizophrenia. Schizophr. Bull. 34, 30–36 (2008).

    Article  PubMed  Google Scholar 

  13. Tan, H.Y., Callicott, J.H. & Weinberger, D.R. Dysfunctional and compensatory prefrontal cortical systems, genes and the pathogenesis of schizophrenia. Cereb. Cortex 17, i171–i181 (2007).

    Article  PubMed  Google Scholar 

  14. Yoshida, T. et al. A prospective longitudinal volumetric MRI study of superior temporal gyrus gray matter and amygdala-hippocampal complex in chronic schizophrenia. Schizophr. Res. 113, 84–94 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sweet, R.A., Henteleff, R.A., Zhang, W., Sampson, A.R. & Lewis, D.A. Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology 34, 374–389 (2009).

    Article  PubMed  Google Scholar 

  16. Steen, R.G., Mull, C., McClure, R., Hamer, R.M. & Lieberman, J.A. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br. J. Psychiatry 188, 510–518 (2006).

    Article  PubMed  Google Scholar 

  17. Kolomeets, N.S., Orlovskaya, D.D., Rachmanova, V.I. & Uranova, N.A. Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: a postmortem morphometric study. Synapse 57, 47–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. DeKosky, S.T. & Scheff, S.W. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Walsh, D.M. & Selkoe, D.J. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44, 181–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Knobloch, M. & Mansuy, I.M. Dendritic spine loss and synaptic alterations in Alzheimer's disease. Mol. Neurobiol. 37, 73–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Arendt, T. Synaptic degeneration in Alzheimer's disease. Acta Neuropathol. 118, 167–179 (2009).

    Article  PubMed  Google Scholar 

  22. Fiala, J.C., Spacek, J. & Harris, K.M. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res. Brain Res. Rev. 39, 29–54 (2002).

    Article  PubMed  Google Scholar 

  23. Kolluri, N., Sun, Z., Sampson, A.R. & Lewis, D.A. Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am. J. Psychiatry 162, 1200–1202 (2005).

    Article  PubMed  Google Scholar 

  24. Bourgeois, J.P., Goldman-Rakic, P.S. & Rakic, P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb. Cortex 4, 78–96 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. McClellan, J. & King, M.C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Abrahams, B.S. & Geschwind, D.H. Advances in autism genetics: on the threshold of a new neurobiology. Nat. Rev. Genet. 9, 341–355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Südhof, T.C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chih, B., Afridi, S.K., Clark, L. & Scheiffele, P. Disorder-associated mutations lead to functional inactivation of neuroligins. Hum. Mol. Genet. 13, 1471–1477 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Dudanova, I., Tabuchi, K., Rohlmann, A., Sudhof, T.C. & Missler, M. Deletion of alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse formation. J. Comp. Neurol. 502, 261–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Durand, C.M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 39, 25–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Berkel, S. et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. Genet. 42, 489–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Roussignol, G. et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J. Neurosci. 25, 3560–3570 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steiner, P. et al. Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 60, 788–802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bacchelli, E. et al. Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene. Mol. Psychiatry 8, 916–924 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Woolfrey, K.M. et al. Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nat. Neurosci. 12, 1275–1284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bourgeron, T. A synaptic trek to autism. Curr. Opin. Neurobiol. 19, 231–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Butler, M.G. et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 42, 318–321 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tavazoie, S.F., Alvarez, V.A., Ridenour, D.A., Kwiatkowski, D.J. & Sabatini, B.L. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727–1734 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Fraser, M.M., Bayazitov, I.T., Zakharenko, S.S. & Baker, S.J. Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities. Neuroscience 151, 476–488 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Kwon, C.H. et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bagni, C. & Greenough, W.T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52, 255–269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cook, E.H. Jr. et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am. J. Hum. Genet. 60, 928–934 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dindot, S.V., Antalffy, B.A., Bhattacharjee, M.B. & Beaudet, A.L. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17, 111–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Mei, L. & Xiong, W.C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat. Rev. Neurosci. 9, 437–452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barros, C.S. et al. Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc. Natl. Acad. Sci. USA 106, 4507–4512 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li, B., Woo, R.S., Mei, L. & Malinow, R. The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 54, 583–597 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stark, K.L. et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat. Genet. 40, 751–760 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Mukai, J. et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat. Neurosci. 11, 1302–1310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. St. Clair, D. et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 336, 13–16 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Schumacher, J. et al. The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Hum. Mol. Genet. 18, 2719–2727 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hayashi-Takagi, A. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat. Neurosci. 13, 327–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lipska, B.K. et al. Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum. Mol. Genet. 15, 1245–1258 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Hill, J.J., Hashimoto, T. & Lewis, D.A. Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol. Psychiatry 11, 557–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Kushima, I. et al. Resequencing and association analysis of the KALRN and EPHB1 genes and their contribution to schizophrenia susceptibility. Schizophr. Bull. published online, doi:10.1093/schbul/sbq118 (1 November 2010).

  58. Garcia, R.A., Vasudevan, K. & Buonanno, A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc. Natl. Acad. Sci. USA 97, 3596–3601 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kristiansen, L.V., Beneyto, M., Haroutunian, V. & Meador-Woodruff, J.H. Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol. Psychiatry 11, 737–747, 705 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Coyle, J.T. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 26, 365–384 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Bertram, L. & Tanzi, R.E. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci. 9, 768–778 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Selkoe, D.J. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192, 106–113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lacor, P.N. et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27, 796–807 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shankar, G.M. et al. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor–dependent signaling pathway. J. Neurosci. 27, 2866–2875 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sleegers, K. et al. The pursuit of susceptibility genes for Alzheimer's disease: progress and prospects. Trends Genet. 26, 84–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Ji, Y. et al. Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients. Neuroscience 122, 305–315 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Dumanis, S.B. et al. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J. Neurosci. 29, 15317–15322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lanz, T.A., Carter, D.B. & Merchant, K.M. Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol. Dis. 13, 246–253 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Zhao, L. et al. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat. Neurosci. 9, 234–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Penzes, P., et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Xie, Z. et al. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56, 640–656 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Youn, H. et al. Kalirin is under-expressed in Alzheimer's disease hippocampus. J. Alzheimers Dis. 11, 385–397 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Norris, C.M. et al. Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer's models. J. Neurosci. 25, 4649–4658 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, S. et al. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tackenberg, C. & Brandt, R. Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau. J. Neurosci. 29, 14439–14450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, H.Y. et al. Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J. Neurosci. 30, 2636–2649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hsieh, H. et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Snyder, E.M. et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8, 1051–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Silverman, J.L., Yang, M., Lord, C. & Crawley, J.N. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 11, 490–502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chadman, K.K. et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res. 1, 147–158 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jamain, S. et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl. Acad. Sci. USA 105, 1710–1715 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chao, H.T., Zoghbi, H.Y. & Rosenmund, C. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron 56, 58–65 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Irwin, S.A. et al. Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet. 111, 140–146 (2002).

    Article  PubMed  Google Scholar 

  85. Yashiro, K. et al. Ube3a is required for experience-dependent maturation of the neocortex. Nat. Neurosci. 12, 777–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou, J. et al. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J. Neurosci. 29, 1773–1783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dölen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chen, Y.J. et al. Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J. Neurosci. 28, 6872–6883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kvajo, M. et al. A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc. Natl. Acad. Sci. USA 105, 7076–7081 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ayhan, Y. et al. Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders. Mol. Psychiatry. published online, doi:10.1038/mp.2009.144 (5 January 2010).

  92. Cahill, M.E. et al. Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proc. Natl. Acad. Sci. USA 106, 13058–13063 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Xie, Z., Cahill, M.E. & Penzes, P. Kalirin loss results in cortical morphological alterations. Mol. Cell. Neurosci. 43, 81–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Ashe, K.H. & Zahs, K.R. Probing the biology of Alzheimer's disease in mice. Neuron 66, 631–645 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jacobsen, J.S. et al. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer′s disease. Proc. Natl. Acad. Sci. USA 103, 5161–5166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Knafo, S. et al. Widespread changes in dendritic spines in a model of Alzheimer's disease. Cereb. Cortex 19, 586–592 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Tsai, J., Grutzendler, J., Duff, K. & Gan, W.B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat. Neurosci. 7, 1181–1183 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Smith, D.L., Pozueta, J., Gong, B., Arancio, O. & Shelanski, M. Reversal of long-term dendritic spine alterations in Alzheimer disease models. Proc. Natl. Acad. Sci. USA 106, 16877–16882 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Spence, S.J. & Schneider, M.T. The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr. Res. 65, 599–606 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Palop, J.J. & Mucke, L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (NIH) National Institute of Mental Health (MH071316, MH071533), National Alliance for Research on Schizophrenia and Depression and Alzheimer's Association (to P.P.), NIH 1F31AG031621 (M.E.C.), NIH 1F31MH085362 (K.A.J.), NIH 1F31MH087043 (J.V.) and a predoctoral American Heart Association fellowship (K.M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Penzes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penzes, P., Cahill, M., Jones, K. et al. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14, 285–293 (2011). https://doi.org/10.1038/nn.2741

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing