Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general method to fine-tune fluorophores for live-cell and in vivo imaging

Abstract

Pushing the frontier of fluorescence microscopy requires the design of enhanced fluorophores with finely tuned properties. We recently discovered that incorporation of four-membered azetidine rings into classic fluorophore structures elicits substantial increases in brightness and photostability, resulting in the Janelia Fluor (JF) series of dyes. We refined and extended this strategy, finding that incorporation of 3-substituted azetidine groups allows rational tuning of the spectral and chemical properties of rhodamine dyes with unprecedented precision. This strategy allowed us to establish principles for fine-tuning the properties of fluorophores and to develop a palette of new fluorescent and fluorogenic labels with excitation ranging from blue to the far-red. Our results demonstrate the versatility of these new dyes in cells, tissues and animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fine-tuning rhodamine dyes.
Figure 2: Rational fine-tuning of other dyes.
Figure 3: Labeling in tissue and in vivo.

Similar content being viewed by others

References

  1. Lavis, L.D. & Raines, R.T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lavis, L.D. & Raines, R.T. Bright building blocks for chemical biology. ACS Chem. Biol. 9, 855–866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xue, L., Karpenko, I.A., Hiblot, J. & Johnsson, K. Imaging and manipulating proteins in live cells through covalent labeling. Nat. Chem. Biol. 11, 917–923 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, Z., Lavis, L.D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Ceresole, M. Verfahren zur Darstellung von Farbstoffen aus der Gruppe des Meta-amidophenolphtaleïns. German Patent 44002 (1887).

  6. Beija, M., Afonso, C.A.M. & Martinho, J.M.G. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 38, 2410–2433 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Panchuk-Voloshina, N. et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47, 1179–1188 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Arden-Jacob, J., Frantzeskos, J., Kemnitzer, N.U., Zilles, A. & Drexhage, K.H. New fluorescent markers for the red region. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57, 2271–2283 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, J.X. et al. Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths. Tetrahedr. Lett. 44, 4355–4359 (2003).

    Article  CAS  Google Scholar 

  10. Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer. ACS Chem. Biol. 6, 600–608 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Grimm, J.B. et al. Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes. ACS Chem. Biol. 8, 1303–1310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lukinavicius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Grimm, J.B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250, 3, 250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lukinavicius, G. et al. Fluorogenic probes for multicolor imaging in living cells. J. Am. Chem. Soc. 138, 9365–9368 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Lavis, L.D., Chao, T.-Y. & Raines, R.T. Fluorogenic label for biomolecular imaging. ACS Chem. Biol. 1, 252–260 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watkins, R.W., Lavis, L.D., Kung, V.M., Los, G.V. & Raines, R.T. Fluorogenic affinity label for the facile, rapid imaging of proteins in live cells. Org. Biomol. Chem. 7, 3969–3975 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wysocki, L.M. et al. Facile and general synthesis of photoactivatable xanthene dyes. Angew. Chem. Int. Ed. Engl. 50, 11206–11209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lukinavicius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Butkevich, A.N. et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells. Angew. Chem. Int. Ed. Engl. 55, 3290–3294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grimm, J.B. et al. Synthesis of a far-red photoactivatable silicon-containing rhodamine for super-resolution microscopy. Angew. Chem. Int. Ed. Engl. 55, 1723–1727 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Grimm, J.B. & Lavis, L.D. Synthesis of rhodamines from fluoresceins using Pd-catalyzed C-N cross-coupling. Org. Lett. 13, 6354–6357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, Z. et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3, e04236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Knight, S.C. et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350, 823–826 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Swinstead, E.E. et al. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165, 593–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bisson-Filho, A.W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grimm, J.B. et al. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13, 985–988 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Whitaker, J.E. et al. Fluorescent rhodol derivatives: versatile, photostable labels and tracers. Anal. Biochem. 207, 267–279 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Mitronova, G.Y. et al. New fluorinated rhodamines for optical microscopy and nanoscopy. Chemistry 16, 4477–4488 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Asanuma, D. et al. Acidic-pH-activatable fluorescence probes for visualizing exocytosis dynamics. Angew. Chem. Int. Ed. Engl. 53, 6085–6089 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Hansch, C., Leo, A. & Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    Article  CAS  Google Scholar 

  31. Hinckley, D.A. & Seybold, P.G. A spectroscopic/thermodynamic study of the rhodamine B lactone–zwitterion equilibrium. Spectrochim. Acta A Mol. Biomol. Spectrosc. 44, 1053–1059 (1988).

    Article  Google Scholar 

  32. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Legant, W.R. et al. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 13, 359–365 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ohyama, T. et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520, 633–639 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Lemon, W.C. et al. Whole-central nervous system functional imaging in larval Drosophila. Nat. Commun. 6, 7924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, T.W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou, X., Lai, R., Beck, J.R., Li, H. & Stains, C.I. Nebraska Red: a phosphinate-based near-infrared fluorophore scaffold for chemical biology applications. Chem. Commun. (Camb.) 52, 12290–12293 (2016).

    Article  CAS  Google Scholar 

  38. Bruchez, M.P. Dark dyes-bright complexes: fluorogenic protein labeling. Curr. Opin. Chem. Biol. 27, 18–23 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Altman, R.B. et al. Cyanine fluorophore derivatives with enhanced photostability. Nat. Methods 9, 68–71 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Palonpon, A.F., Sodeoka, M. & Fujita, K. Molecular imaging of live cells by Raman microscopy. Curr. Opin. Chem. Biol. 17, 708–715 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Critchfield, F.E., Gibson, J.A. Jr. & Hall, J.L. Dielectric constant for the dioxane-water system from 20 to 35°. J. Am. Chem. Soc. 75, 1991–1992 (1953).

    Article  CAS  Google Scholar 

  42. Suzuki, K. et al. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Frisch, M.J. et al. Gaussian 09, revision D.01. (Gaussian, Wallingford, Connecticut, USA, 2009).

  44. Dreuw, A., Weisman, J.L. & Head-Gordon, M. Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J. Chem. Phys. 119, 2943–2946 (2003).

    Article  CAS  Google Scholar 

  45. Jacquemin, D. et al. Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. J. Chem. Phys. 126, 144105 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. Guthmuller, J. & Champagne, B. Resonance Raman scattering of rhodamine 6G as calculated by time-dependent density functional theory: vibronic and solvent effects. J. Phys. Chem. A 112, 3215–3223 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Setiawan, D., Kazaryan, A., Martoprawiro, M.A. & Filatov, M. A first principles study of fluorescence quenching in rhodamine B dimers: how can quenching occur in dimeric species? Phys. Chem. Chem. Phys. 12, 11238–11244 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Mütze, J. et al. Excitation spectra and brightness optimization of two-photon excited probes. Biophys. J. 102, 934–944 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  CAS  PubMed  Google Scholar 

  52. Kohl, J. et al. Ultrafast tissue staining with chemical tags. Proc. Natl. Acad. Sci. USA 111, E3805–E3814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ji, N., Milkie, D.E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Sun, W., Tan, Z., Mensh, B.D. & Ji, N. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 308–315 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Berro and E. Schreiter (Janelia) for purified HaloTag protein, and H. Choi (Janelia) for the Sec61β-HaloTag plasmid, contributive discussions and critical reading of the manuscript. This work was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

L.D.L. and J.B.G. conceived the project. J.B.G. contributed organic synthesis and one-photon spectroscopy measurements. A.K.M. contributed organic synthesis and computational chemistry experiments. Y.L., R.L. and N.J. contributed mouse imaging experiments. T.A.B. contributed cultured cell imaging experiments. W.C.L. and P.J.K. contributed larval explant imaging experiments. R.P. and J.J.M. contributed two-photon spectroscopy measurements. L.D.L. contributed one-photon spectroscopy measurements and wrote the manuscript with input from the other authors.

Corresponding author

Correspondence to Luke D Lavis.

Ethics declarations

Competing interests

The authors declare competing interests: J.B.G. and L.D.L. have filed patent applications whose value may be affected by this publication.

Integrated supplementary information

Supplementary Figure 1 Spectral data for fluorophores 1–12, 16, 21, and 25.

Normalized absorbance (abs), fluorescence excitation (flex), and fluorescence emission (flem) spectra for rhodamines (1, 512), rhodols (4, 16) carborhodamines (2, 21), and Si‑rhodamines (3, 25) in 10 mM HEPES, pH 7.3; the flex spectra are delineated by a dashed line. Note: the normalized absorbance spectra of fluorophores 3, 21, and 25 exhibit higher noise due to low visible absorption in aqueous buffer.

Source data

Supplementary Figure 2 Labeling cells with Janelia Fluor dyes.

(a) Chemical structure of JF525–SNAP-tag (15). (b) Image of COS7 cells expressing SNAP-tag–histone H2B and stained with ligand 15. (c) HaloTag and SNAP-tag ligands have no effect on COS7 cell viability at concentrations used for labeling: HaloTag ligands 13, 14, 17, 23, 26, 27 were incubated with cells for 1 h; SNAP-tag ligands 15, 20, 24, 29 were incubated for 3 h; error bars show ± s.d.; n = 3. (d) Chemical structures of known 488 nm-excited HaloTag ligands 18 and 19. (e) Plot of average cellular fluorescence vs. incubation time for live cells loaded with ligands 1719. (f) Chemical structure of JF503–SNAP-tag ligand (20). (g) Image of COS7 cells expressing SNAP-tag–histone H2B and stained with ligand 20. (h) Structure of JF585–SNAP-tag ligand (24). (i) Image of COS7 cells expressing histone H2B–SNAP-tag and stained with ligand 24. (j) Multicolor image of U2OS cells expressing Sec61β–HaloTag fusion (stable) and TOMM20–SNAP-tag (transient) labeled with JF503–SNAP-tag ligand 20 (mitochondria, green), JF585-HaloTag ligand 23 (ER, orange), and JF646–Hoechst33 (nucleus, red). (k) Chemical structure of SiTMR–HaloTag ligand 28. (l) Images of COS7 cells expressing HaloTag–histone H2B fusion and labeled with 250 nM of HaloTag ligand 28 for 1 h and imaged directly without washing. The number indicates mean signal (nuclear) to background (cytosol) ratio (S/B) in three fields of view (n = 152 areas). This image was taken with identical microscope settings to those used with ligands 26 and 27 (Fig. 2m,n). (m) Chemical structure of JF635–SNAP-tag ligand (29). (n) Image of COS7 cells expressing SNAP-tag–histone H2B and stained with ligand 29. (o) Multicolor image of U2OS cells expressing Sec61β–HaloTag fusion (stable) and histone H2B–SNAP-tag (transient) labeled with JF525–SNAP-tag ligand 15 (nucleus, yellow) and JF635–HaloTag ligand 27 (ER, red). Scale bars for all images: 15 μm.

Source data

Supplementary Figure 3 In vivo imaging using the Janelia Fluor dyes

(a–b) Comparison of Basin cell and pan-neronal labeling in tissue. (a) SiMView light-sheet microscopy image of the ventral nerve cord region of Drosophila larval explant expressing HaloTag protein in Basin neurons and stained with JF635–HaloTag ligand (27; same imaging data set as Fig. 3a). Lower panel shows image of the anteroposterior (AP) cross-section of the indicated volume. (b) SiMView light-sheet microscopy image of ventral nerve cord region of Drosophila larval explant expressing GCaMP6s protein pan-neuronally (Gal4/UAS system; 57C10-Gal4 driver line). Lower panel shows image of the AP cross-section of the indicated volume. Scale bars for a and b: 50 μm. (c) SiMView light-sheet microscopy image (same as Fig. 3a) with inset showing a single imaging slice from the 3D projection through neuronal cell bodies. (d) Representative images from the labeling time course for JF585–HaloTag ligand (23) in vivo. Bright field image showing cranial window and epi-fluorescence images of green (GCaMP6s; t = 0) and red (JF585, t = 0 and 6 h. Scale bar: 0.5 mm. (e) Plot of GCaMP6s green fluorescence vs. JF585 red fluorescence for 2-photon imaging experiments. Found: Pearson linear correlation coefficient (ρ) = 0.768; n = 106 regions of interest (ROIs).

Source data

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Note 1

Life Sciences Reporting Summary

Life Sciences Reporting Summary

In vivo labelling of layer 5 cortical neurons using JF585–HaloTag ligand

Layer 5 neurons expressing GCaMP6s and HaloTag were labeled with JF585–HaloTag ligand (23) through intraperitoneal (IP) injection and imaged with two-photon fluorescence microscopy. JF585 was excited at 1100 nm and the stack (307 μm × 307 μm × 530 μm) was acquired from 50 to 580 μm below dura mater at 2 μm step in Z. 3D movie was made by the ImageJ 3D view plugin (unit is in μm).

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimm, J., Muthusamy, A., Liang, Y. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat Methods 14, 987–994 (2017). https://doi.org/10.1038/nmeth.4403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4403

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research