Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Detergent-free mass spectrometry of membrane protein complexes

Abstract

We developed a method that allows release of intact membrane protein complexes from amphipols, bicelles and nanodiscs in the gas phase for observation by mass spectrometry (MS). Current methods involve release of membrane protein complexes from detergent micelles, which reveals subunit composition and lipid binding. We demonstrated that oligomeric complexes or proteins requiring defined lipid environments are stabilized to a greater extent in the absence of detergent.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of mass spectra of DgkA and pSRII from micelles, amphipols and bicelles.
Figure 2: Mass spectra of empty nanodiscs and those containing DgkA and pSRII.

Similar content being viewed by others

References

  1. Barrera, N.P., Di Bartolo, N., Booth, P.J. & Robinson, C.V. Science 321, 243–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Barrera, N.P., Zhou, M. & Robinson, C.V. Trends Cell Biol. 23, 1–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Botelho, A.V., Huber, T., Sakmar, T.P. & Brown, M.F. Biophys. J. 91, 4464–4477 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Denisov, I.G., Grinkova, Y.V., Lazarides, A.A. & Sligar, S.G. J. Am. Chem. Soc. 126, 3477–3487 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Whiles, J.A., Deems, R., Vold, R.R. & Dennis, E.A. Bioorg. Chem. 30, 431–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Ujwal, R. & Bowie, J.U. Methods 55, 337–341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu, T.Y., Raschle, T., Hiller, S. & Wagner, G. Biochim. Biophys. Acta-Biomembr. 1818, 1562–1569 (2012).

    Article  CAS  Google Scholar 

  8. Duerr, U.H.N., Gildenberg, M. & Ramamoorthy, A. Chem. Rev. 112, 6054–6074 (2012).

    Article  Google Scholar 

  9. Li, D. et al. Nature published online, 10.1038/nature12179 (15 May 2013).

  10. Van Horn, W.D. & Sanders, C.R. Ann. Rev. Biophys. 41, 81–101 (2012).

    Article  CAS  Google Scholar 

  11. Bohnenberger, E. & Sandermann, H. Eur. J. Biochem. 132, 645–650 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Gordeliy, V.I. et al. Nature 419, 484–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Gautier, A., Mott, H.R., Bostock, M.J., Kirkpatrick, J.P. & Nietlispach, D. Nat. Struct. Mol. Biol. 17, 768–774 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gorzelle, B.M. et al. J. Am. Chem. Soc. 124, 11594–11595 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, J., Chen, S., Zhang, J.J. & Huang, X.-Y. Nat. Struct. Mol. Biol. 20, 419–425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bayburt, T.H. & Sligar, S.G. FEBS Lett. 584, 1721–1727 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Kriegsmann, J., Brehs, M., Klare, J.P., Engelhard, M. & Fitter, J. Biochim. Biophys. Acta-Biomembr. 1788, 522–531 (2009).

    Article  CAS  Google Scholar 

  18. Leney, A.C., McMorran, L.M., Radford, S.E. & Ashcroft, A.E. Anal. Chem. 84, 9841–9847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marty, M.T. et al. Anal. Chem. 84, 8957–8960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou, Y.F. & Bowie, J.U. J. Biol. Chem. 275, 6975–6979 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Shimono, K. et al. FEBS Lett. 420, 54–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Laganowsky, A. et al. Nat. Protoc. 8, 639–651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morrison, E.A. & Henzler-Wildman, K.A. Biochim. Biophys. Acta 1818, 814–820 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, D.H., Chen, A.D. & Johnson, C.S. J. Magn. Reson. 115, 260–264 (1995).

    Article  CAS  Google Scholar 

  25. Hernandez, H. & Robinson, C.V. Nat. Protoc. 2, 715–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Sobott, F. et al. Anal. Chem. 74, 1402–1407 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Ho, J.T.C. et al. Anal. Biochem. 376, 13–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Weinglass, A.B. et al. EMBO J. 22, 1467–1477 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morgner, N. & Robinson, C.V. Anal. Chem. 84, 2939–2948 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Borysik and N. Morgner for assistance acquiring dynamic light scattering data and assigning mass spectra using Massign, D. Reilly, who was responsible for modifications to the mass spectrometer to enable higher-energy collisions, C. Sanders (Vanderbilt University) for WH1061, an E. coli strain lacking dgkA, E. Reading and J. Marcoux for discussions, M. Smikle for help generating figures, and A. Siebert for electron microscopy support. The Oxford Particle Imaging Centre (OPIC) electron microscopy facility was founded by a Wellcome Trust Joint Infrastructure Fund (JIF) award (060208/Z/00/Z) and is supported by a (WT) equipment grant (093305/Z/10/Z). J.T.S.H. and C.V.R. acknowledge funding from the Medical Research Council and an European Research Council advanced grant (IMPRESS). D.L. and M.C. acknowledge Science Foundation Ireland (grants 07/IN.1/B1836 and 12/IA/1255) and the US National Institutes of Health (grants GM75915, P50GM073210 and U54GM094599). M.J.B. thanks Biotechnology and Biological Sciences Research Council for a studentship. Y.T.C.Y. thanks the Cambridge Overseas Trust and the Taiwan Ministry of Education for a studentship. C.V.R. is funded by a Royal Society Professorship.

Author information

Authors and Affiliations

Authors

Contributions

J.T.S.H. and C.V.R. designed the project. J.T.S.H. and A.R. performed all MS experiments and molecular biology excluding those detailed hereafter. Y.T.-C.Y., M.B. and D.N. provided pSRII protein and carried out bicelle NMR spectroscopy experiments. D.L. and M.C. provided DgkA protein. I.L. and V.M. performed EM experiments. J.L.P.B. was involved in the experimental design. A.L. provided molecular biology advice and assistance. J.T.S.H. and C.V.R. wrote the paper.

Corresponding author

Correspondence to Carol V Robinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 2136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopper, J., Yu, YC., Li, D. et al. Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10, 1206–1208 (2013). https://doi.org/10.1038/nmeth.2691

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2691

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing