Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An auxin-based degron system for the rapid depletion of proteins in nonplant cells

Abstract

Plants have evolved a unique system in which the plant hormone auxin directly induces rapid degradation of the AUX/IAA family of transcription repressors by a specific form of the SCF E3 ubiquitin ligase. Other eukaryotes lack the auxin response but share the SCF degradation pathway, allowing us to transplant the auxin-inducible degron (AID) system into nonplant cells and use a small molecule to conditionally control protein stability. The AID system allowed rapid and reversible degradation of target proteins in response to auxin and enabled us to generate efficient conditional mutants of essential proteins in yeast as well as cell lines derived from chicken, mouse, hamster, monkey and human cells, thus offering a powerful tool to control protein expression and study protein function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the AID system.
Figure 2: A nuclear GFP fused with the aid degron can be controlled by the AID system in budding yeast.
Figure 3: Cell cycle–defective phenotype after Mcm4 depletion using the AID system.
Figure 4: Protein expression can be controlled by the AID system in mammalian cells.
Figure 5: Cell cycle phenotype of chicken DT40 cells after depletion of CENP-H mRNA or CENP-H protein.

Similar content being viewed by others

References

  1. Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85, 5166–5170 (1988).

    Article  CAS  Google Scholar 

  2. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  3. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  4. Picard, D., Salser, S.J. & Yamamoto, K.R. A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 54, 1073–1080 (1988).

    Article  CAS  Google Scholar 

  5. Haruki, H., Nishikawa, J. & Laemmli, U.K. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925–932 (2008).

    Article  CAS  Google Scholar 

  6. Picard, D. Posttranslational regulation of proteins by fusions to steroid-binding domains. Methods Enzymol. 327, 385–401 (2000).

    Article  CAS  Google Scholar 

  7. Zhou, P. Targeted protein degradation. Curr. Opin. Chem. Biol. 9, 51–55 (2005).

    Article  CAS  Google Scholar 

  8. Banaszynski, L.A. & Wandless, T.J. Conditional control of protein function. Chem. Biol. 13, 11–21 (2006).

    Article  CAS  Google Scholar 

  9. Gosink, M.M. & Vierstra, R.D. Redirecting the specificity of ubiquitination by modifying ubiquitin-conjugating enzymes. Proc. Natl. Acad. Sci. USA 92, 9117–9121 (1995).

    Article  CAS  Google Scholar 

  10. Zhou, P., Bogacki, R., McReynolds, L. & Howley, P.M. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell 6, 751–756 (2000).

    Article  CAS  Google Scholar 

  11. Sakamoto, K.M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  Google Scholar 

  12. Schneekloth, J.S. Jr. et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126, 3748–3754 (2004).

    Article  CAS  Google Scholar 

  13. Zhang, J., Zheng, N. & Zhou, P. Exploring the functional complexity of cellular proteins by protein knockout. Proc. Natl. Acad. Sci. USA 100, 14127–14132 (2003).

    Article  CAS  Google Scholar 

  14. Dohmen, R.J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    Article  CAS  Google Scholar 

  15. Labib, K., Tercero, J.A. & Diffley, J.F.X. Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000).

    Article  CAS  Google Scholar 

  16. Kanemaki, M., Sanchez-Diaz, A., Gambus, A. & Labib, K. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423, 720–724 (2003).

    Article  CAS  Google Scholar 

  17. Sanchez-Diaz, A. et al. Inn1 couples contraction of the actomyosin ring to membrane ingression during cytokinesis in budding yeast. Nat. Cell Biol. 10, 395–406 (2008).

    Article  CAS  Google Scholar 

  18. Su, X., Bernal, J.A. & Venkitaraman, A.R. Cell-cycle coordination between DNA replication and recombination revealed by a vertebrate N-end rule degron-Rad51. Nat. Struct. Mol. Biol. 15, 1049–1058 (2008).

    Article  CAS  Google Scholar 

  19. Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  Google Scholar 

  20. Banaszynski, L.A., Sellmyer, M.A., Contag, C.H., Wandless, T.J. & Thorne, S.H. Chemical control of protein stability and function in living mice. Nat. Med. 14, 1123–1127 (2008).

    Article  CAS  Google Scholar 

  21. Herm-Gotz, A. et al. Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat. Methods 4, 1003–1005 (2007).

    Article  Google Scholar 

  22. Armstrong, C.M. & Goldberg, D.E. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat. Methods 4, 1007–1009 (2007).

    Article  CAS  Google Scholar 

  23. Teale, W.D., Paponov, I.A. & Palme, K. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847–859 (2006).

    Article  CAS  Google Scholar 

  24. Ruegger, M. et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 12, 198–207 (1998).

    Article  CAS  Google Scholar 

  25. Gray, W.M. et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13, 1678–1691 (1999).

    Article  CAS  Google Scholar 

  26. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005).

    Article  CAS  Google Scholar 

  27. Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005).

    Article  CAS  Google Scholar 

  28. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  Google Scholar 

  29. Abel, S. & Theologis, A. Early genes and auxin action. Plant Physiol. 111, 9–17 (1996).

    Article  CAS  Google Scholar 

  30. Dreher, K.A., Brown, J., Saw, R.E. & Callis, J. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18, 699–714 (2006).

    Article  CAS  Google Scholar 

  31. Schulman, B.A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381–386 (2000).

    Article  CAS  Google Scholar 

  32. Sugata, N., Munekata, E. & Todokoro, K. Characterization of a novel kinetochore protein, CENP-H. J. Biol. Chem. 274, 27343–27346 (1999).

    Article  CAS  Google Scholar 

  33. Fukagawa, T. et al. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J. 20, 4603–4617 (2001).

    Article  CAS  Google Scholar 

  34. Folkes, L.K., Dennis, M.F., Stratford, M.R., Candeias, L.P. & Wardman, P. Peroxidase-catalyzed effects of indole-3-acetic acid and analogues on lipid membranes, DNA, and mammalian cells in vitro. Biochem. Pharmacol. 57, 375–382 (1999).

    Article  CAS  Google Scholar 

  35. de Melo, M.P., de Lima, T.M., Pithon-Curi, T.C. & Curi, R. The mechanism of indole acetic acid cytotoxicity. Toxicol. Lett. 148, 103–111 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Labib (Cancer Research UK) for critical reading of the manuscript, for support and for providing Myc and HA antibodies, yeast strains and tagging plasmids for budding yeast; S. Mimura (Nagoya University) for providing the cdc34-2 yeast strain; H. Kanazawa (Osaka University) for providing a GFP plasmid; T. Hori for help with flow cytometry analysis; and H. Araki, H. Masukata and K. Sugasawa for discussion. M.K. thanks Y. Tak for her support. This work was funded by a Challenging Exploratory Research and a Grant-in-Aid for Young Scientists (A) from the Ministry of Education, Science, Sports and Culture of Japan and by a Research Promotion Grant from the Uehara Memorial Foundation to M.K. K.N. is funded by a Japan Society for the Promotion of Science fellowship (DC2).

Author information

Authors and Affiliations

Authors

Contributions

K.N. and M.K. designed and performed all experiments. T.F. supervised experiments using DT40. T.K. created the basic concept of AID to control protein levels in nonplant cells. M.K. and H.T. supervised and led this project. K.N. and M.K. wrote the manuscript. K.N., T.F., H.T., T.K. and M.K. discussed and checked the manuscript.

Corresponding author

Correspondence to Masato Kanemaki.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Table 1–3 (PDF 5386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, K., Fukagawa, T., Takisawa, H. et al. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6, 917–922 (2009). https://doi.org/10.1038/nmeth.1401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing