Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier

Abstract

The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and low permeability. BBB maintenance is important in the central nervous system (CNS) because disruption of the BBB may contribute to many brain disorders, including Alzheimer disease and ischemic stroke. The molecular mechanisms of BBB development remain ill-defined, however. Here we report that src-suppressed C-kinase substrate (SSeCKS) decreases the expression of vascular endothelial growth factor (VEGF) through AP-1 reduction and stimulates expression of angiopoietin-1 (Ang-1), an antipermeability factor in astrocytes. Conditioned media from SSeCKS-overexpressing astrocytes (SSeCKS-CM) blocked angiogenesis in vivo and in vitro. Moreover, SSeCKS-CM increased tight junction proteins in endothelial cells, consequently decreasing [3H]sucrose permeability. Furthermore, immunoreactivity to SSeCKS gradually increased during the BBB maturation period, and SSeCKS-expressing astrocytes closely interacted with zonula occludens (ZO)-1-expressing blood vessels in vivo. Collectively, our results suggest that SSeCKS regulates BBB differentiation by modulating both brain angiogenesis and tight junction formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of SSeCKS expression by oxygen tension.
Figure 2: Antiangiogenic activity of SSeCKS in vivo and in vitro.
Figure 3: SSeCKS overexpression decreases VEGF expression and AP-1 transcriptional activity.
Figure 4: Regulation of vascular permeability and expression of BBB marker genes by SSeCKS-transfected astrocytes.
Figure 5: Immunohistochemical staining of SSeCKS, VEGF and ZO-1 in developing mouse brain.
Figure 6: Double immunostaining of SSeCKS, GFAP and ZO-1 in the adult mouse brain.

Similar content being viewed by others

References

  1. Lin, X. et al. Isolation and characterization of a novel mitogenic regulatory gene, 322, which is transcriptionally suppressed in cells transformed by src and ras. Mol. Cell Biol. 15, 2754–2762 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gelman, I.H., Tombler, E. & Vargas, J. Jr. A role for SSeCKS, a major protein kinase C substrate with tumor suppressor activitiy, in cytoskeletal architecture, formation of migratory processes, and cell migration during embryogenesis. Histochem. J. 32, 13–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lin, X., Nelson, P. & Gelman, I.H. SSeCKS, a major protein kinase C substrate with tumor suppressor activity, regulates G(1)—>S progression by controlling the expression and cellular compartmentalization of cyclin D. Mol. Cell Biol. 20, 7259–7272 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gelman, I.H. The role of SSeCKS/Gravin/AKAP12 scaffolding proteins in the spaciotemporal control of signaling pathways in oncogenesis and development. Front. Biosci. 7, d1782–d1797 (2002).

    CAS  PubMed  Google Scholar 

  5. Lin, X., Tombler, E., Nelson, P.J., Ross, M. & Gelman, I.H. A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. J. Biol. Chem. 271, 28430–28438 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Xia, W., Unger, P., Miller, L., Nelson, J. & Gelman, I.H. The src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Res. 61, 5644–5651 (2001).

    CAS  PubMed  Google Scholar 

  7. Welsh, J.B. et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelila ovarian cancer. Proc. Natl. Acad. Sci. USA 98, 1176–1181 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perou, C.M. et al. Molecular portraits of human breast tumors. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Risau, W. & Wolburg, H. Development of the blood-brain barrier. Trends Neurosci. 13, 174–178 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Risau, W. Differentiation of endothelium. FASEB J. 9, 926–933 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Staddon, J.M. & Rubin, L.L. Cell adhesion, cell junctions and the blood-brain barrier. Curr. Opin. Neurobiol. 6, 622–627 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Petty, M.A. & Wettstein, J.G. Elements of cerebral microvascular ischemia. Brain Res. Brain Res. Rev. 36, 23–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Nag, S. The blood-brain barrier and cerebral angiogenesis: lessons from the cold-injury model. Trends Mol. Med. 8, 38–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Plate, K.H. Mechanisms of angiogenesis in the brain. J. Neuropathol. Exp. Neurol. 58, 313–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Breier, G., Albrecht, U., Sterrer, S. & Risau, W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521–532 (1992).

    CAS  PubMed  Google Scholar 

  16. Prat, A., Biernacki, K., Wosik, K. & Antel, J.P. Glial cell influence on the human blood-brain barrier. Glia 36, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Janzer, R.C. & Raff, M.C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325, 253–257 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Maltepe, E. & Simon, M.C. Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J. Mol. Med. 76, 391–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, Y.M. et al. Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev. Dyn. 220, 175–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Song, H.S. et al. Oxygen tension regulates the maturation of the blood-brain barrier. Biochem. Biophys. Res. Commun. 290, 325–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Dvorak, H.F., Nagy, J.A., Feng, D., Brown, L.F. & Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor and the significance of imcrovascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237, 97–132 (1999).

    CAS  PubMed  Google Scholar 

  23. Liekens, S., De Clercq, E. & Neyts, J. Angiogenesis: regulators and clinical applications. Biochem. Pharmacol. 61, 253–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Pages, G. et al. Signaling angiogenesis via p42/p44 kinase cascade. Ann. NY Acad. Sci. 902, 187–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Alfranca, A. et al. c-Jun and hypoxia-inducible factor 1 functionally cooperate in hypoxia-induced gene transcription. Mol. Cell Biol. 22, 12–22 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kniesel, U. & Wolburg, H. Tight junctions of the blood-brain barrier. Cell. Mol. Neurobiol. 20, 57–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Thurston, G. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Thurston, G. et al. Angiopoietin-1 protects the adult vascular against plasma leakage. Nat. Med. 6, 460–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Krikun, G. et al. Abnormal uterine bleeding during progestin-only contraception may result from free radical-induced alterations in angiopoietin expression. Am. J. Pathol. 161, 979–986 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rubin, L.L. & Staddon, J.M. The cell biology of the blood-brain barrier. Annu. Rev. Neurosci. 22, 11–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Liebner, S. et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 100, 323–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Ebnet K. et al. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 275, 27979–27988 (2000).

    CAS  PubMed  Google Scholar 

  34. Nico, B. et al. Developmental expression of ZO-1 antigen in the mouse blood-brain barrier. Brain Res. Dev. Brain Res. 114, 161–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Rubin, L.L. et al. A cell culture model of the blood-brain barrier. J. Cell Biol. 115, 1725–1735 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, W., Dentler, W.L. & Borchardt, R.T. VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am. J. Physiol. Heart Circ. Physiol. 280, H434–H440 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Fischer, S., Wobben, M., Marti, H.H., Renz, D. & Schaper, W. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc. Res. 63, 70–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Dallasta, L.M. et al. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am. J. Pathol. 155, 1915–1927 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levy, A.P., Levy, N.S., Wegner, S. & Goldberg, M.A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 270, 13333–13340 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Joussen, A.M. et al. Suppression of diabetic retinopathy with angiopoietin-1. Am. J. Pathol. 160, 1683–1693 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCarthy, K.D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).

    Article  CAS  PubMed  Google Scholar 

  42. Radany E.H. et al. Directed establishment of rat brain cell lines with the phenotypic characteristics of type 1 astrocytes. Proc. Natl. Acad. Sci. USA 89, 6467–6471 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lisitsyn, N., Lisitsyn, N. & Wigler, M. Cloning the differences between two complex genomes. Science 259, 946–951 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, M.S. et al. Angiogenic activity of pyruvic acid in in vivo and in vitro angiogenesis models. Cancer Res. 61, 3290–3293 (2001).

    CAS  PubMed  Google Scholar 

  45. Kim, M.S. et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med. 7, 437–443 (2001).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Kim and J.-H. Park (School of Biological Sciences, Seoul National University, Korea) and M. Kim (College of Medicine, Seoul National University, Korea) for helpful discussions about brain histology. Financial support was from the Vascular System Research Center grant from the Korea Science and Engineering Foundation and the National Research Laboratory Fund (2002-N-NL-01-C-015), and Ministry of Science and Technology, Korea (to K.-W. K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Won Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SW., Kim, W., Choi, Y. et al. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9, 900–906 (2003). https://doi.org/10.1038/nm889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing