Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase

Abstract

Recent efforts have revealed that numerous protein-coding messenger RNAs have natural antisense transcript partners, most of which seem to be noncoding RNAs. Here we identify a conserved noncoding antisense transcript for β-secretase-1 (BACE1), a crucial enzyme in Alzheimer's disease pathophysiology. The BACE1-antisense transcript (BACE1-AS) regulates BACE1 mRNA and subsequently BACE1 protein expression in vitro and in vivo. Upon exposure to various cell stressors including amyloid-β 1–42 (Aβ 1–42), expression of BACE1-AS becomes elevated, increasing BACE1 mRNA stability and generating additional Aβ 1–42 through a post-transcriptional feed-forward mechanism. BACE1-AS concentrations were elevated in subjects with Alzheimer's disease and in amyloid precursor protein transgenic mice. These data show that BACE1 mRNA expression is under the control of a regulatory noncoding RNA that may drive Alzheimer's disease–associated pathophysiology. In summary, we report that a long noncoding RNA is directly implicated in the increased abundance of Aβ 1–42 in Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic organization and expression analysis of BACE1 and BACE1-AS.
Figure 2: BACE1-AS regulates BACE1 mRNA and protein expression in vitro.
Figure 3: Bace1-AS regulates Bace1 in vivo.
Figure 4: Effect of cell stressors on BACE1 and BACE1-AS.
Figure 5: BACE1-AS increases the stability of BACE1 mRNA.
Figure 6: BACE1-AS and BACE1 expression is elevated in the brain of individuals with Alzheimer's disease.

Similar content being viewed by others

References

  1. Goedert, M. & Spillantini, M.G. A century of Alzheimer's disease. Science 314, 777–781 (2006).

    Article  CAS  Google Scholar 

  2. Faghihi, M.A., Mottagui-Tabar, S. & Wahlestedt, C. Genetics of neurological disorders. Expert Rev. Mol. Diagn. 4, 317–332 (2004).

    Article  CAS  Google Scholar 

  3. Monaco, S., Zanusso, G., Mazzucco, S. & Rizzuto, N. Cerebral amyloidoses: molecular pathways and therapeutic challenges. Curr. Med. Chem. 13, 1903–1913 (2006).

    Article  Google Scholar 

  4. Lacor, P.N. et al. Aβ oligomer–induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27, 796–807 (2007).

    Article  CAS  Google Scholar 

  5. Zhu, D. et al. Phospholipases A2 mediate amyloid-β peptide–induced mitochondrial dysfunction. J. Neurosci. 26, 11111–11119 (2006).

    Article  CAS  Google Scholar 

  6. Esposito, G. et al. CB1 receptor selective activation inhibits β-amyloid–induced iNOS protein expression in C6 cells and subsequently blunts tau protein hyperphosphorylation in co-cultured neurons. Neurosci. Lett. 404, 342–346 (2006).

    Article  CAS  Google Scholar 

  7. Snyder, E.M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci. 8, 1051–1058 (2005).

    Article  CAS  Google Scholar 

  8. Matsuyama, S., Teraoka, R., Mori, H. & Tomiyama, T. Inverse correlation between amyloid precursor protein and synaptic plasticity in transgenic mice. Neuroreport 18, 1083–1087 (2007).

    Article  CAS  Google Scholar 

  9. Abramov, A.Y., Canevari, L. & Duchen, M.R. β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24, 565–575 (2004).

    Article  CAS  Google Scholar 

  10. Ohyagi, Y. et al. Intracellular Aβ42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease. FASEB J. 19, 255–257 (2005).

    Article  CAS  Google Scholar 

  11. Zhao, J. et al. β-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer's disease pathogenesis. J. Neurosci. 27, 3639–3649 (2007).

    Article  CAS  Google Scholar 

  12. Sun, X. et al. Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. USA 103, 18727–18732 (2006).

    Article  CAS  Google Scholar 

  13. Tong, Y. et al. Oxidative stress potentiates BACE1 gene expression and Aβ generation. J. Neural Transm. 112, 455–469 (2005).

    Article  CAS  Google Scholar 

  14. Li, R. et al. Amyloid β peptide load is correlated with increased β-secretase activity in sporadic Alzheimer's disease patients. Proc. Natl. Acad. Sci. USA 101, 3632–3637 (2004).

    Article  CAS  Google Scholar 

  15. Holsinger, R.M., McLean, C.A., Collins, S.J., Masters, C.L. & Evin, G. Increased β-secretase activity in cerebrospinal fluid of Alzheimer's disease subjects. Ann. Neurol. 55, 898–899 (2004).

    Article  Google Scholar 

  16. Fukumoto, H., Cheung, B.S., Hyman, B.T. & Irizarry, M.C. β-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol. 59, 1381–1389 (2002).

    Article  Google Scholar 

  17. Johnston, J.A. et al. Expression and activity of β-site amyloid precursor protein cleaving enzyme in Alzheimer's disease. Biochem. Soc. Trans. 33, 1096–1100 (2005).

    Article  CAS  Google Scholar 

  18. Ohno, M. et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease. Neuron 41, 27–33 (2004).

    Article  CAS  Google Scholar 

  19. Tesco, G. et al. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity. Neuron 54, 721–737 (2007).

    Article  CAS  Google Scholar 

  20. Ma, H. et al. Involvement of β-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein–mediated enhancement of memory and activity-dependent synaptic plasticity. Proc. Natl. Acad. Sci. USA 104, 8167–8172 (2007).

    Article  CAS  Google Scholar 

  21. Laird, F.M. et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci. 25, 11693–11709 (2005).

    Article  CAS  Google Scholar 

  22. Hu, X. et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9, 1520–1525 (2006).

    Article  CAS  Google Scholar 

  23. Willem, M. et al. Control of peripheral nerve myelination by the β-secretase BACE1. Science 314, 664–666 (2006).

    Article  CAS  Google Scholar 

  24. Engstrom, P.G. et al. Complex loci in human and mouse genomes. PLoS Genet. 2, e47 (2006).

    Article  Google Scholar 

  25. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  Google Scholar 

  26. Wahlestedt, C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov. Today 11, 503–508 (2006).

    Article  CAS  Google Scholar 

  27. Su, Y., Ryder, J. & Ni, B. Inhibition of Aβ production and APP maturation by a specific PKA inhibitor. FEBS Lett. 546, 407–410 (2003).

    Article  CAS  Google Scholar 

  28. Thakker, D.R., Hoyer, D. & Cryan, J.F. Interfering with the brain: use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol. Ther. 109, 413–438 (2006).

    Article  CAS  Google Scholar 

  29. Borghi, R. et al. The increased activity of BACE1 correlates with oxidative stress in Alzheimer's disease. Neurobiol. Aging 28, 1009–1014 (2006).

    Article  Google Scholar 

  30. Tamagno, E., Bardini, P., Guglielmotto, M., Danni, O. & Tabaton, M. The various aggregation states of β-amyloid 1–42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic. Biol. Med. 41, 202–212 (2006).

    Article  CAS  Google Scholar 

  31. Harkany, T. et al. Mechanisms of β-amyloid neurotoxicity: perspectives of pharmacotherapy. Rev. Neurosci. 11, 329–382 (2000).

    Article  CAS  Google Scholar 

  32. Yatin, S.M. et al. Temporal relations among amyloid β-peptide–induced free-radical oxidative stress, neuronal toxicity, and neuronal defensive responses. J. Mol. Neurosci. 11, 183–197 (1998).

    Article  CAS  Google Scholar 

  33. Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451, 720–724 (2008).

    Article  CAS  Google Scholar 

  34. Walsh, D.M. et al. The role of cell-derived oligomers of Aβ in Alzheimer's disease and avenues for therapeutic intervention. Biochem. Soc. Trans. 33, 1087–1090 (2005).

    Article  CAS  Google Scholar 

  35. Link, C.D. et al. Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer's disease model. Neurobiol. Aging 24, 397–413 (2003).

    Article  CAS  Google Scholar 

  36. Ray, S. et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat. Med. 13, 1359–1362 (2007).

    Article  CAS  Google Scholar 

  37. Chishti, M.A. et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276, 21562–21570 (2001).

    Article  CAS  Google Scholar 

  38. Li, F. et al. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J. Neurochem. 89, 1308–1312 (2004).

    Article  CAS  Google Scholar 

  39. McConlogue, L. et al. Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP transgenic mice. J. Biol. Chem. 282, 26326–26334 (2007).

    Article  CAS  Google Scholar 

  40. Zhong, Z. et al. Levels of β-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch. Gen. Psychiatry 64, 718–726 (2007).

    Article  CAS  Google Scholar 

  41. Li, Y., Zhou, W., Tong, Y., He, G. & Song, W. Control of APP processing and Aβ generation level by BACE1 enzymatic activity and transcription. FASEB J. 20, 285–292 (2006).

    Article  Google Scholar 

  42. Cirrito, J.R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005).

    Article  CAS  Google Scholar 

  43. Emilsson, L., Saetre, P. & Jazin, E. Alzheimer's disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signaling. Neurobiol. Dis. 21, 618–625 (2006).

    Article  CAS  Google Scholar 

  44. Brooks, W.M. et al. Gene expression profiles of metabolic enzyme transcripts in Alzheimer's disease. Brain Res. 1127, 127–135 (2007).

    Article  CAS  Google Scholar 

  45. Rossner, S., Sastre, M., Bourne, K. & Lichtenthaler, S.F. Transcriptional and translational regulation of BACE1 expression–implications for Alzheimer's disease. Prog. Neurobiol. 79, 95–111 (2006).

    Article  CAS  Google Scholar 

  46. Holsinger, R.M., McLean, C.A., Beyreuther, K., Masters, C.L. & Evin, G. Increased expression of the amyloid precursor β-secretase in Alzheimer's disease. Ann. Neurol. 51, 783–786 (2002).

    Article  CAS  Google Scholar 

  47. Hsieh, H. et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    Article  CAS  Google Scholar 

  48. St Laurent, G., III & Wahlestedt, C. Noncoding RNAs: couplers of analog and digital information in nervous system function? Trends Neurosci. 30, 612–621 (2007).

    Article  CAS  Google Scholar 

  49. Vassar, R. The β-secretase, BACE: a prime drug target for Alzheimer's disease. J. Mol. Neurosci. 17, 157–170 (2001).

    Article  CAS  Google Scholar 

  50. Kumar, P. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Rogers (Sun Health Research Institute) for autopsy brain tissue. We are grateful to M. Leissring (Mayo Clinic) for helpful discussions and for kindly providing cell lines and APP- tg19959 mouse materials. We also thank D. Willoughby for his help in RNA purification from human Alzheimer's disease samples. S. Brothers provided valuable help in manuscript preparation. M.A.F. is partly supported by a scholarship from the Ahwaz University of Medical Sciences, Ministry of Health I.R. Iran. This study has been supported in part by the US National Institutes of Health (AG 029290).

Author information

Authors and Affiliations

Authors

Contributions

C.W., M.A.F., P.J.K. and G.S.L. conceived and designed the experiments and analyzed the data. M.A.F., F.M., P.J.K. and A.M.K. performed the experiments. D.E.W., B.G.S., T.E.M. and C.E.F. provided human Alzheimer's disease RNA samples. M.A.F., C.W., P.J.K. and G.S.L. wrote the paper.

Corresponding author

Correspondence to Claes Wahlestedt.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6, Supplementary Data 1 and 2, Supplementary Table 1 and Supplementary Methods (PDF 3081 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faghihi, M., Modarresi, F., Khalil, A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nat Med 14, 723–730 (2008). https://doi.org/10.1038/nm1784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing