Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pim-1 regulates cardiomyocyte survival downstream of Akt

A Corrigendum to this article was published on 01 March 2008

Abstract

The serine-threonine kinases Pim-1 and Akt regulate cellular proliferation and survival. Although Akt is known to be a crucial signaling protein in the myocardium, the role of Pim-1 has been overlooked. Pim-1 expression in the myocardium of mice decreased during postnatal development, re-emerged after acute pathological injury in mice and was increased in failing hearts of both mice and humans. Cardioprotective stimuli associated with Akt activation induced Pim-1 expression, but compensatory increases in Akt abundance and phosphorylation after pathological injury by infarction or pressure overload did not protect the myocardium in Pim-1–deficient mice. Transgenic expression of Pim-1 in the myocardium protected mice from infarction injury, and Pim-1 expression inhibited cardiomyocyte apoptosis with concomitant increases in Bcl-2 and Bcl-XL protein levels, as well as in Bad phosphorylation levels. Relative to nontransgenic controls, calcium dynamics were significantly enhanced in Pim-1–overexpressing transgenic hearts, associated with increased expression of SERCA2a, and were depressed in Pim-1–deficient hearts. Collectively, these data suggest that Pim-1 is a crucial facet of cardioprotection downstream of Akt.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pim-1 is expressed in the human and mouse myocardium.
Figure 2: Pim-1 induces expression of antiapoptotic proteins and protects against apoptosis.
Figure 3: Cardioprotective stimuli induce Pim-1 expression.
Figure 4: Expression of Pim-1 is Akt dependent.
Figure 5: Pim-1 protects against infarction injury.
Figure 6: Pim-1 expression is necessary to maintain efficient calcium handling.

Similar content being viewed by others

References

  1. Wang, Z. et al. Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J. Vet. Sci. 2, 167–179 (2001).

    Article  CAS  Google Scholar 

  2. Bachmann, M. & Moroy, T. The serine/threonine kinase Pim-1. Int. J. Biochem. Cell Biol. 37, 726–730 (2005).

    Article  CAS  Google Scholar 

  3. Aho, T.L. et al. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 571, 43–49 (2004).

    Article  CAS  Google Scholar 

  4. Hammerman, P.S., Fox, C.J., Birnbaum, M.J. & Thompson, C.B. Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 105, 4477–4483 (2005).

    Article  CAS  Google Scholar 

  5. Pekarsky, Y. et al. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc. Natl. Acad. Sci. USA 97, 3028–3033 (2000).

    Article  CAS  Google Scholar 

  6. Shiraishi, I. et al. Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ. Res. 94, 884–891 (2004).

    Article  CAS  Google Scholar 

  7. Krumenacker, J.S., Narang, V.S., Buckley, D.J. & Buckley, A.R. Prolactin signaling to pim-1 expression: a role for phosphatidylinositol 3-kinase. J. Neuroimmunol. 113, 249–259 (2001).

    Article  CAS  Google Scholar 

  8. Krishnan, N., Pan, H., Buckley, D.J. & Buckley, A. Prolactin-regulated pim-1 transcription: identification of critical promoter elements and Akt signaling. Endocrine 20, 123–130 (2003).

    Article  CAS  Google Scholar 

  9. Koike, N., Maita, H., Taira, T., Ariga, H. & Iguchi-Ariga, S.M. Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1). FEBS Lett. 467, 17–21 (2000).

    Article  CAS  Google Scholar 

  10. Sussman, M.A. et al. Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J. Clin. Invest. 101, 51–61 (1998).

    Article  CAS  Google Scholar 

  11. Bhattacharya, N. et al. Pim-1 associates with protein complexes necessary for mitosis. Chromosoma 111, 80–95 (2002).

    Article  CAS  Google Scholar 

  12. Camper-Kirby, D. et al. Myocardial Akt activation and gender: increased nuclear activity in females versus males. Circ. Res. 88, 1020–1027 (2001).

    Article  CAS  Google Scholar 

  13. Domen, J., van der Lugt, N.M., Laird, P.W., Saris, C.J. & Berns, A. Analysis of Pim-1 function in mutant mice. Leukemia 7 (Suppl. 2), S108–S112 (1993).

    PubMed  Google Scholar 

  14. Konietzko, U. et al. Pim kinase expression is induced by LTP stimulation and required for the consolidation of enduring LTP. EMBO J. 18, 3359–3369 (1999).

    Article  CAS  Google Scholar 

  15. Domen, J. et al. Pim-1 levels determine the size of early B lymphoid compartments in bone marrow. J. Exp. Med. 178, 1665–1673 (1993).

    Article  CAS  Google Scholar 

  16. Bullock, A.N., Debreczeni, J., Amos, A., Knapp, S. & Turk, B.E. Structure and substrate specificity of the Pim-1 kinase. J. Biol. Chem. 280, 41675–41682 (2005).

    Article  CAS  Google Scholar 

  17. Palaty, C.K. et al. Identification of the autophosphorylation sites of the Xenopus laevis Pim-1 proto-oncogene-encoded protein kinase. J. Biol. Chem. 272, 10514–10521 (1997).

    Article  CAS  Google Scholar 

  18. Subramaniam, A. et al. Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem. 266, 24613–24620 (1991).

    CAS  PubMed  Google Scholar 

  19. Sugden, P.H. & Clerk, A. Cellular mechanisms of cardiac hypertrophy. J. Mol. Med. 76, 725–746 (1998).

    Article  CAS  Google Scholar 

  20. Izumo, S., Nadal-Ginard, B. & Mahdavi, V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc. Natl. Acad. Sci. USA 85, 339–343 (1988).

    Article  CAS  Google Scholar 

  21. Katakami, N. et al. Role of pim-1 in smooth muscle cell proliferation. J. Biol. Chem. 279, 54742–54749 (2004).

    Article  CAS  Google Scholar 

  22. Hoefnagel, J.J. et al. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling. Blood 105, 3671–3678 (2004).

    Article  Google Scholar 

  23. Ionov, Y. et al. Pim-1 protein kinase is nuclear in Burkitt's lymphoma: nuclear localization is necessary for its biologic effects. Anticancer Res. 23, 167–178 (2003).

    CAS  PubMed  Google Scholar 

  24. Evans, K.E. & Fox, S.W. Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus. BMC Cell Biol. 8, 4 (2007).

    Article  Google Scholar 

  25. Barre, B., Avril, S. & Coqueret, O. Opposite regulation of myc and p21waf1 transcription by STAT3 proteins. J. Biol. Chem. 278, 2990–2996 (2003).

    Article  CAS  Google Scholar 

  26. Poolman, R.A., Gilchrist, R. & Brooks, G. Cell cycle profiles and expressions of p21CIP1 and P27KIP1 during myocyte development. Int. J. Cardiol. 67, 133–142 (1998).

    Article  CAS  Google Scholar 

  27. Phoon, C.K. et al. Embryonic heart failure in NFATc1−/− mice: novel mechanistic insights from in utero ultrasound biomicroscopy. Circ. Res. 95, 92–99 (2004).

    Article  CAS  Google Scholar 

  28. Torella, D. et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ. Res. 94, 514–524 (2004).

    Article  CAS  Google Scholar 

  29. Dupays, L. et al. Dysregulation of connexins and inactivation of NFATc1 in the cardiovascular system of Nkx2–5 null mutants. J. Mol. Cell. Cardiol. 38, 787–798 (2005).

    Article  CAS  Google Scholar 

  30. Lilly, M., Sandholm, J., Cooper, J.J., Koskinen, P.J. & Kraft, A. The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway. Oncogene 18, 4022–4031 (1999).

    Article  CAS  Google Scholar 

  31. Fujiwara, Y. et al. Inhibition of the PI3 kinase/Akt pathway enhances doxorubicin-induced apoptotic cell death in tumor cells in a p53-dependent manner. Biochem. Biophys. Res. Commun. 340, 560–566 (2006).

    Article  CAS  Google Scholar 

  32. Wingett, D., Long, A., Kelleher, D. & Magnuson, N.S. pim-1 proto-oncogene expression in anti-CD3-mediated T cell activation is associated with protein kinase C activation and is independent of Raf-1. J. Immunol. 156, 549–557 (1996).

    CAS  PubMed  Google Scholar 

  33. Rahman, Z., Yoshikawa, H., Nakajima, Y. & Tasaka, K. Down-regulation of Pim-1 and Bcl-2 is accompanied with apoptosis of interleukin-6-depleted mouse B-cell hybridoma 7TD1 cells. Immunol. Lett. 75, 199–208 (2001).

    Article  CAS  Google Scholar 

  34. Eiken, H.G. et al. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. Eur. J. Clin. Invest. 31, 389–397 (2001).

    Article  CAS  Google Scholar 

  35. Khaleghpour, K., Pyronnet, S., Gingras, A.C. & Sonenberg, N. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol. Cell. Biol. 19, 4302–4310 (1999).

    Article  CAS  Google Scholar 

  36. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  Google Scholar 

  37. Zhu, N. et al. CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-kappa B pathway. J. Immunol. 168, 744–754 (2002).

    Article  CAS  Google Scholar 

  38. Krumenacker, J.S. et al. Prolactin-regulated apoptosis of Nb2 lymphoma cells: pim-1, bcl-2, and bax expression. Endocrine 9, 163–170 (1998).

    Article  CAS  Google Scholar 

  39. Gude, N. et al. Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ. Res. 99, 381–388 (2006).

    Article  CAS  Google Scholar 

  40. Tsujita, Y. et al. Nuclear targeting of Akt antagonizes aspects of cardiomyocyte hypertrophy. Proc. Natl. Acad. Sci. USA 103, 11946–11951 (2006).

    Article  CAS  Google Scholar 

  41. Takizawa, T. et al. Transcription of the SERCA2 gene is decreased in pressure-overloaded hearts: A study using in vivo direct gene transfer into living myocardium. J. Mol. Cell. Cardiol. 31, 2167–2174 (1999).

    Article  CAS  Google Scholar 

  42. Prasad, A.M. et al. Phenylephrine hypertrophy, Ca2+-ATPase (SERCA2), and Ca2+ signaling in neonatal rat cardiac myocytes. Am. J. Physiol. Cell Physiol. 292, C2269–C2275 (2007).

    Article  CAS  Google Scholar 

  43. Asahi, M. et al. Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice. Proc. Natl. Acad. Sci. USA 101, 9199–9204 (2004).

    Article  CAS  Google Scholar 

  44. Suarez, J. et al. Doxycycline inducible expression of SERCA2a improves calcium handling and reverts cardiac dysfunction in pressure overload-induced cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 287, H2164–H2172 (2004).

    Article  CAS  Google Scholar 

  45. Sakata, S. et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J. Mol. Cell. Cardiol. 42, 852–861 (2007).

    Article  CAS  Google Scholar 

  46. del Monte, F. et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc. Natl. Acad. Sci. USA 101, 5622–5627 (2004).

    Article  CAS  Google Scholar 

  47. Kim, Y.K. et al. Mechanism of enhanced cardiac function in mice with hypertrophy induced by overexpressed Akt. J. Biol. Chem. 278, 47622–47628 (2003).

    Article  CAS  Google Scholar 

  48. Rota, M. et al. Nuclear targeting of Akt enhances ventricular function and myocyte contractility. Circ. Res. 97, 1332–1341 (2005).

    Article  CAS  Google Scholar 

  49. Jacobs, M.D. et al. Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002. J. Biol. Chem. 280, 13728–13734 (2005).

    Article  CAS  Google Scholar 

  50. Kato, T. et al. Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J. Clin. Invest. 115, 2716–2730 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants (5R01HL067245, 1R01HL091102 and 1P01HL085577) to M.A.S. and a US National Heart, Lung, and Blood Institute grant 1P01AG023071 to P.A. J.A.M. and N.G. are Fellows of the Rees-Stealy Research Foundation and the San Diego State University Heart Institute. We appreciate the contribution of P. Bonine for outstanding administrative assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.A.M. planned and performed experiments and wrote the manuscript; M.R. and Y.M. planned and performed experiments; J.F., C.C., G.E., F.D., M.A., R.A. and S.S. performed experiments; G.N.E. and W.W. performed surgeries; K.F., J.J.M., C.C.G., A.L. and J.K. performed experiments and advised on the experimental approach; N.M. provided Pim1 cDNAs and advised on the technical proposal; A.B. provided Pim-KO animals; R.M.B. and S.R.H. provided human samples and advice; E.M.S. provided technical advice and advice on the experimental approach; P.A. provided advice on the experimental approach, rewriting and editing, and laboratory resources for experiments; M.A.S. supervised all experimental procedures and edited and composed the manuscript.

Corresponding author

Correspondence to Mark A Sussman.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–5, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 15857 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraski, J., Rota, M., Misao, Y. et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13, 1467–1475 (2007). https://doi.org/10.1038/nm1671

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing