Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of β2-adrenergic receptor stimulates γ-secretase activity and accelerates amyloid plaque formation

Abstract

Amyloid plaque is the hallmark and primary cause of Alzheimer disease. Mutations of presenilin-1, the γ-secretase catalytic subunit, can affect amyloid-β (Aβ) production and Alzheimer disease pathogenesis. However, it is largely unknown whether and how γ-secretase activity and amyloid plaque formation are regulated by environmental factors such as stress, which is mediated by receptors including β2-adrenergic receptor (β2-AR). Here we report that activation of β2-AR enhanced γ-secretase activity and thus Aβ production. This enhancement involved the association of β2-AR with presenilin-1 and required agonist-induced endocytosis of β2-AR and subsequent trafficking of γ-secretase to late endosomes and lysosomes, where Aβ production was elevated. Similar effects were observed after activation of δ-opioid receptor. Furthermore, chronic treatment with β2-AR agonists increased cerebral amyloid plaques in an Alzheimer disease mouse model. Thus, β2-AR activation can stimulate γ-secretase activity and amyloid plaque formation, which suggests that abnormal activation of β2-AR might contribute to Aβ accumulation in Alzheimer disease pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GPCR stimulation increases Aβ production in cell lines and primary hippocampal cultures.
Figure 2: β2–AR stimulation enhances γ-secretase activity.
Figure 3: Receptor endocytosis is associated with enhanced γ-secretase activity.
Figure 4: Increased γ-secretase and Aβ in endocytic compartments.
Figure 5: Enrichment of γ-secretase requires endocytic transport.
Figure 6: Enhanced γ-secretase activity and Aβ production, and accelerated amyloid plaque formation in vivo.

Similar content being viewed by others

References

  1. Tanzi, R.E. The synaptic Aâ hypothesis of Alzheimer disease. Nat. Neurosci. 8, 977–979 (2005).

    Article  CAS  Google Scholar 

  2. Cleary, J.P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84 (2005).

    Article  CAS  Google Scholar 

  3. Takasugi, N. et al. The role of presenilin cofactors in the γ-secretase complex. Nature 422, 438–441 (2003).

    Article  CAS  Google Scholar 

  4. Sisodia, S.S. & St. George-Hyslop, P.H. γ-secretase, Notch, Aβ and Alzheimer's disease: where do the presenilins fit in? Nat. Rev. Neurosci. 3, 281–290 (2002).

    Article  CAS  Google Scholar 

  5. Tanzi, R.E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    Article  CAS  Google Scholar 

  6. Koo, E.H. & Kopan, R. Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nat. Med. 10 (suppl.), S26–S33 (2004).

    Article  Google Scholar 

  7. Cai, D. et al. Presenilin-1 uses phospholipase D1 as a negative regulator of β-amyloid formation. Proc. Natl. Acad. Sci. USA 103, 1941–1946 (2006).

    Article  CAS  Google Scholar 

  8. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  Google Scholar 

  9. Nitsch, R.M., Slack, B.E., Wurtman, R.J. & Growdon, J.H. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258, 304–307 (1992).

    Article  CAS  Google Scholar 

  10. Xu, H. et al. Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nat. Med. 4, 447–451 (1998).

    Article  CAS  Google Scholar 

  11. Lazarov, O. et al. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120, 701–713 (2005).

    Article  CAS  Google Scholar 

  12. Saito, T. et al. Somatostatin regulates brain amyloid β peptide Aβ42 through modulation of proteolytic degradation. Nat. Med. 11, 434–439 (2005).

    Article  CAS  Google Scholar 

  13. Bierhaus, A. et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl. Acad. Sci. USA 100, 1920–1925 (2003).

    Article  CAS  Google Scholar 

  14. Yin, D., Tuthill, D., Mufson, R.A. & Shi, Y. Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression. J. Exp. Med. 191, 1423–1428 (2000).

    Article  CAS  Google Scholar 

  15. Ferry, B., Roozendaal, B. & McGaugh, J.L. Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biol. Psychiatry 46, 1140–1152 (1999).

    Article  CAS  Google Scholar 

  16. Hall, R.A. & Lefkowitz, R.J. Regulation of G protein-coupled receptor signaling by scaffold proteins. Circ. Res. 91, 672–680 (2002).

    Article  CAS  Google Scholar 

  17. Jordan, B.A., Trapaidze, N., Gomes, I., Nivarthi, R. & Devi, L.A. Oligomerization of opioid receptors with β2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 98, 343–348 (2001).

    CAS  PubMed  Google Scholar 

  18. Gonzalez-Gaitan, M. & Stenmark, H. Endocytosis and signaling: a relationship under development. Cell 115, 513–521 (2003).

    Article  CAS  Google Scholar 

  19. Shenoy, S.K. et al. β-arrestin-dependent, G protein-independent ERK1/2 activation by the β2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273 (2006).

    Article  CAS  Google Scholar 

  20. Gabilondo, A.M. et al. A dileucine motif in the C terminus of the β2-adrenergic receptor is involved in receptor internalization. Proc. Natl. Acad. Sci. USA 94, 12285–12290 (1997).

    Article  CAS  Google Scholar 

  21. Seachrist, J.L. & Ferguson, S.S.G. Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sci. 74, 225–235 (2003).

    Article  CAS  Google Scholar 

  22. Russo-Neustadt, A. & Cotman, C.W. Adrenergic receptors in Alzheimer's disease brain: selective increases in the cerebella of aggressive patients. J. Neurosci. 17, 5573–5580 (1997).

    Article  CAS  Google Scholar 

  23. Wang, Y.P., Wang, Z.F., Zhang, Y.C., Tian, Q. & Wang, J.Z. Effect of amyloid peptides on serum withdrawal-induced cell differentiation and cell viability. Cell Res. 14, 467–472 (2004).

    Article  CAS  Google Scholar 

  24. Walter, J., Kaether, C., Steiner, H. & Haass, C. The cell biology of Alzheimer's disease: uncovering the secrets of secretases. Curr. Opin. Neurobiol. 11, 585–590 (2001).

    Article  CAS  Google Scholar 

  25. Pinnix, I. et al. A novel γ-secretase assay based on detection of the putative C-terminal fragment-γ of amyloid β protein precursor. J. Biol. Chem. 276, 481–487 (2001).

    Article  CAS  Google Scholar 

  26. Farmery, M.R. et al. Partial purification and characterization of γ-secretase from post-mortem human brain. J. Biol. Chem. 278, 24277–24284 (2003).

    Article  CAS  Google Scholar 

  27. Law, P.-Y., Wong, Y.H. & Loh, H.H. Molecular mechanisms and regulation of opioid receptor signaling. Annu. Rev. Pharmacol. Toxicol. 40, 389–430 (2000).

    Article  CAS  Google Scholar 

  28. Gagnon, A.W., Kallal, L. & Benovic, J.L. Role of clathrin-mediated endocytosis in agonist-induced down-regulation of the β2-adrenergic receptor. J. Biol. Chem. 273, 6976–6981 (1998).

    Article  CAS  Google Scholar 

  29. Soeder, K.J. et al. The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J. Biol. Chem. 274, 12017–12022 (1999).

    Article  CAS  Google Scholar 

  30. Seachrist, J.L. & Ferguson, S.S. Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sci. 74, 225–235 (2003).

    Article  CAS  Google Scholar 

  31. Gruenberg, J. The endocytic pathway: a mosaic of domains. Nat. Rev. Mol. Cell Biol. 2, 721–730 (2001).

    Article  CAS  Google Scholar 

  32. Langui, D. et al. Subcellular topography of neuronal Aβ peptide in APPxPS1 transgenic mice. Am. J. Pathol. 165, 1465–1477 (2004).

    Article  CAS  Google Scholar 

  33. Takahashi, R.H. et al. Oligomerization of Alzheimer's β-amyloid within processes and synapses of cultured neurons and brain. J. Neurosci. 24, 3592–3599 (2004).

    Article  CAS  Google Scholar 

  34. Vetrivel, K.S. et al. Association of γ-secretase with lipid rafts in post-Golgi and endosome membranes. J. Biol. Chem. 279, 44945–44954 (2004).

    Article  CAS  Google Scholar 

  35. Xia, W. et al. Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid β-protein generation. Proc. Natl. Acad. Sci. USA 97, 9299–9304 (2000).

    Article  CAS  Google Scholar 

  36. Ray, W.J. et al. Evidence for a physical interaction between presenilin and Notch. Proc. Natl. Acad. Sci. USA 96, 3263–3268 (1999).

    Article  CAS  Google Scholar 

  37. Li, Y.M. et al. Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc. Natl. Acad. Sci. USA 97, 6138–6143 (2000).

    Article  CAS  Google Scholar 

  38. Esler, W.P. et al. Activity-dependent isolation of the presenilin-γ-secretase complex reveals nicastrin and a gamma substrate. Proc. Natl. Acad. Sci. USA 99, 2720–2725 (2002).

    Article  CAS  Google Scholar 

  39. Follesa, P. & Mocchetti, I. Regulation of basic fibroblast growth factor and nerve growth factor mRNA by β-adrenergic receptor activation and adrenal steroids in rat central nervous system. Mol. Pharmacol. 43, 132–138 (1993).

    CAS  PubMed  Google Scholar 

  40. Guo, D.F., Sun, Y.L., Hamet, P. & Inagami, T. The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res. 11, 165–180 (2001).

    Article  CAS  Google Scholar 

  41. Vassar, R. β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  Google Scholar 

  42. Pasternak, S.H. et al. Presenilin-1, nicastrin, amyloid precursor protein, and γ-secretase activity are co-localized in the lysosomal membrane. J. Biol. Chem. 278, 26687–26694 (2003).

    Article  CAS  Google Scholar 

  43. Cataldo, A.M. et al. Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157, 277–286 (2000).

    Article  CAS  Google Scholar 

  44. Callahan, M.J. et al. Augmented senile plaque load in aged female β-amyloid precursor protein-transgenic mice. Am. J. Pathol. 158, 1173–1177 (2001).

    Article  CAS  Google Scholar 

  45. Walters, M.R. & Sharma, R. Cross-talk between β-adrenergic stimulation and estrogen receptors: isoproterenol inhibits 17 β-estradiol-induced gene transcription in A7r5 cells. J. Cardiovasc. Pharmacol. 42, 266–274 (2003).

    Article  CAS  Google Scholar 

  46. Fratiglioni, L., Paillard-Borg, S. & Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3, 343–353 (2004).

    Article  Google Scholar 

  47. Wilson, R.S. et al. Proneness to psychological distress is associated with risk of Alzheimer's disease. Neurology 61, 1479–1485 (2003).

    Article  CAS  Google Scholar 

  48. Khachaturian, A.S. et al. Antihypertensive medication use and incident Alzheimer disease: the Cache County study. Arch. Neurol. 63, 686–692 (2006).

    Article  Google Scholar 

  49. Ramsden, M. et al. Androgens modulate β-amyloid levels in male rat brain. J. Neurochem. 87, 1052–1055 (2003).

    Article  CAS  Google Scholar 

  50. Bahadoran, P. et al. Characterization of the molecular defects in Rab27a, caused by RAB27A missense mutations found in patients with Griscelli syndrome. J. Biol. Chem. 278, 11386–11392 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.M. Poo, D.S. Li, H. Zheng, Z. Zhang and L. Pu for comments on the manuscript; Y.X. Zeng, G. Niu, P. Xia, Y.Y. Wang, W.B. Zhang and Y. Sun for technical support; R.J. Lefkowitz (Duke University Medical Center) for β2-AR TYY plasmid; S.L. Schmid (The Scripps Research Institute) for Dyn K44A plasmid; S. Marullo (The Cochin Institute) for β3-AR plasmid; P. Wang (University of Minnesota School of Medicine) for various Rab5 and Rab7 plasmids; and B. De Strooper (Katholieke Universiteit Leuven) and H.X. Xu (Burnham Institute for Medical Research) for wild-type and Psen1−/−Psen2−/− mouse embryonic fibroblasts. This research was supported by grants from the Ministry of Science and Technology (2003CB515405 and 2005CB522406) and the National Natural Science Foundation of China (30021003 and 30228018).

Author information

Authors and Affiliations

Authors

Contributions

This study was designed by Y.N., X.Z. and G.P. The experiments were performed by Y.N. and X.Z. G.B. and L.T. contributed to the in vivo experiments. L.Z. and Z.W. contributed to the in vitro experiments. M.S., J.X. and Y.B. provided the APPswe/PS1ΔE9 mice. G.P. supervised the project. Y.N., X.Z. and G.P. contributed to the writing of the paper.

Corresponding author

Correspondence to Gang Pei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Stimulation of endogenous DOR enhances γ-secretase activity. (PDF 138 kb)

Supplementary Fig. 2

Time course of γ-secretase activity after stimulation of β2AR. (PDF 260 kb)

Supplementary Fig. 3

Pertussis toxin does not affect DOR-induced enhancement of γ-secretase activity. (PDF 221 kb)

Supplementary Fig. 4

Transferrin can not induce γ-secretase activity enhancement. (PDF 230 kb)

Supplementary Fig. 5

Stimulation of DOR increases γ-secretase activity in LEL. (PDF 363 kb)

Supplementary Fig. 6

Stimulation of endogenous β2AR increases localization of γ-secretase components in LEL. (PDF 1320 kb)

Supplementary Fig. 7

Association of DOR and PS1 in rat hippocampus. (PDF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Zhao, X., Bao, G. et al. Activation of β2-adrenergic receptor stimulates γ-secretase activity and accelerates amyloid plaque formation. Nat Med 12, 1390–1396 (2006). https://doi.org/10.1038/nm1485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing