Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Live imaging of lymphatic development in the zebrafish

Abstract

The lymphatic system has become the subject of great interest in recent years because of its important role in normal and pathological processes. Progress in understanding the origins and early development of this system, however, has been hampered by difficulties in observing lymphatic cells in vivo and in performing defined genetic and experimental manipulation of the lymphatic system in currently available model organisms. Here, we show that the optically clear developing zebrafish provides a useful model for imaging and studying lymphatic development, with a lymphatic system that shares many of the morphological, molecular and functional characteristics of the lymphatic vessels found in other vertebrates. Using two-photon time-lapse imaging of transgenic zebrafish, we trace the migration and lineage of individual cells incorporating into the lymphatic endothelium. Our results show lymphatic endothelial cells of the thoracic duct arise from primitive veins through a novel and unexpected pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of a previously uncharacterized vascular system in the zebrafish.
Figure 2: Molecular characterization of zebrafish lymphatic vessels.
Figure 3: Functional characterization of zebrafish lymphatic vessels.
Figure 4: Anatomical characterization of zebrafish lymphatic vessels.
Figure 5: Assembly and origins of the zebrafish lymphatic thoracic duct.

Similar content being viewed by others

References

  1. Oliver, G. & Alitalo, K. The lymphatic vasculature: recent progress and paradigms. Annu. Rev. Cell Dev. Biol. 21, 457–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Sabin, F. On the origin of the lymphatic system from the veins, and the development of the lymph hearts and thoracic duct in the pig. Am. J. Anat. 1, 367–389 (1902).

    Article  Google Scholar 

  3. Huntington, G. & McClure, C. The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica). Am. J. Anat. 10, 177–311 (1910).

    Article  Google Scholar 

  4. Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Pepper, M.S. & Skobe, M. Lymphatic endothelium: morphological, molecular and functional properties. J. Cell Biol. 163, 209–213 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wigle, J.T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, L. et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129, 4797–4806 (2002).

    CAS  PubMed  Google Scholar 

  9. Glasgow, E. & Tomarev, S.I. Restricted expression of the homeobox gene prox 1 in developing zebrafish. Mech. Dev. 76, 175–178 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Y.W., Gao, W., Teh, H.L., Tan, J.H. & Chan, W.K. Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebrafish interrenal primordium. Mol. Cell. Biol. 23, 7243–7255 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bovenkamp, D.E. et al. Expression and mapping of duplicate neuropilin-1 and neuropilin-2 genes in developing zebrafish. Gene Expr. Patterns 4, 361–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Martyn, U. & Schulte-Merker, S. Zebrafish neuropilins are differentially expressed and interact with vascular endothelial growth factor during embryonic vascular development. Dev. Dyn. 231, 33–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, H.H., Houart, C. & Moens, C.B. Cloning and embryonic expression of zebrafish neuropilin genes. Gene Expr. Patterns 4, 371–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Cao, Y. et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc. Natl. Acad. Sci. USA 95, 14389–14394 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Karkkainen, M.J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Saaristo, A. et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J. Exp. Med. 196, 719–730 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ober, E.A. et al. VEGF-C is required for vascular development and endoderm morphogenesis in zebrafish. EMBO Rep. 5, 78–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Lawson, N.D., Mugford, J.W., Diamond, B.A. & Weinstein, B.M. Phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev. 17, 1346–1351 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ny, A. et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat. Med. 11, 998–1004 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Dumont, D.J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946–949 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Karkkainen, M.J. et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat. Genet. 25, 153–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997).

    CAS  PubMed  Google Scholar 

  25. Tilney, N.L. Patterns of lymphatic drainage in the adult laboratory rat. J. Anat. 109, 369–383 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Putte, S.C. The early development of the lymphatic system in mouse embryos. Acta Morphol. Neerl. Scand. 13, 245–286 (1975).

    CAS  PubMed  Google Scholar 

  27. van der Putte, S.C. The development of the lymphatic system in man. Adv. Anat. Embryol. Cell Biol. 51, 3–60 (1975).

    CAS  PubMed  Google Scholar 

  28. Kampmeier, O.F. Evolution and comparative morphology of the lymphatic system 620 (Charles C. Thomas, Springfield, Illinois, 1969).

    Google Scholar 

  29. Isogai, S., Lawson, N.D., Torrealday, S., Horiguchi, M. & Weinstein, B.M. Angiogenic network formation in the developing vertebrate trunk. Development 130, 5281–5290 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Wilting, J. et al. Dual origin of avian lymphatics. Dev. Biol. 292, 165–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B.B. & Schilling, T.F. Dev. Dyn. 203, 253–310 1995.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank W.-K. Chan (National University of Singapore) for providing the prox1 plasmid; M. Klagsbrun (Harvard University) for the nrp2a plasmid, B. Roman (Georgetown University) for the Tg(fli1:EGFP)yl, Tg(gata1:dsRed) fish, and K. Noma, Y. Takahashi and the members of the bio-imaging center of Iwate Medical University for technical assistance. We are grateful to all the members of the Weinstein lab for discussions and technical assistance. We also thank G. Oliver for discussions and I.B. Dawid for critical reading of this manuscript. K.Y. is supported by an EMBO long-term fellowship. B.M.W. is supported by the intramural program of the US National Institutes of Health's National Institute of Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brant M Weinstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Assembly of the developing thoracic duct. (PDF 194 kb)

Supplementary Fig. 2

The lymphatic thoracic duct is present in the adult zebrafish trunk. (PDF 279 kb)

Supplementary Fig. 3

Molecular characterization of the thoracic duct. (PDF 212 kb)

Supplementary Fig. 4

Emergence of buds for the jugular lymphatics from the common cardinal vein, at or near the future drainage point. (PDF 179 kb)

Supplementary Video 1

This movie shows two-photon time-lapse images of a thoracic duct sprout in the ventral trank of a Tg(fli:EGFP)y1 transgenic zebrafish. (MOV 10148 kb)

Supplementary Video 2

This movie shows two-photon time-lapse images of endothelial cell nuclear dynamics in Tg(fli:EGFP)y1 transgenic zebrafish. (MOV 9235 kb)

Supplementary Video 3

This movie shows two-photon time-lapse images of endothelial cell nuclear dynamics in Tg(fli:EGFP)y1 transgenic zebrafish. (MOV 8624 kb)

Supplementary Video 4

This is a previously published movie from Isogai, et al. (Development 130, 5281; 2003) reproduced here for the convenience of the reader. (MOV 984 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaniv, K., Isogai, S., Castranova, D. et al. Live imaging of lymphatic development in the zebrafish. Nat Med 12, 711–716 (2006). https://doi.org/10.1038/nm1427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing